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Towards real-time verification of CO, emissions

The Paris Agreement has increased the incentive to verify reported anthropogenic carbon dioxide emissions with
independent Earth system observations. Reliable verification requires a step change in our understanding of carbon

cycle variability.

Glen P. Peters, Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Pierre Friedlingstein, Tatiana llyina,
Robert B. Jackson, Fortunat Joos, Jan Ivar Korsbakken, Galen A. McKinley, Stephen Sitch and Pieter Tans

missions of CO. from fossil fuels and
E industry did not change from 2014 to

2016, yet there was a record increase
in CO, concentration in the atmosphere,
This apparent inconsistency is explained by
the response of the natural carbon cycle to
the 2015-2016 El Nino event’, but it raises
important questions about our ability to
detect a sustained change in emissions from
the atmospheric record, High-accuracy
calibrated atmospheric measurements,
diverse satellite data, and integrative
modelling approaches could, and ultimately
must, provide independent evidence of the
effectiveness of collective action to address
climate change. T ification will only
be possible if we or out the
background variability in atmospheric CO,
concentrations driven by natural processes, a

hallanme that <l scranae ne

(0.2-3,8%) and in the rest of the world of
1.9% (0.3%-3.4%) (ref. ). The increased
fossil fuel and industry emissions
technically bring an end to the three years
of approximately constant emissions that
persisted from 2014 to 2016, Land-use
change emissions in 2017 should be similar to
their 2016 level’, based on fire observations
using satellite data, When combining CO,
cmissions from fossil fuels, industry, and
land-use change, we project 2017 global
emissions ta be 41.5 2 4.4 billion tonnes of
€Oy, similar to 2015 levels. Even though the
projected 2017 emissions match those of the
record year in 2015, they are not expected

to increase atmospheric CO, concentration
as much as in 2015 hecause of reinvigorated
carbon uptake in natural reservoirs after the
2015-2016 El Nino event (Fig. 1),
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1| Trends in €O, emissians and atmospheric
€O, coneentrations. Even though CO,

emissions from fossil fuel and industry, and total
emissians Including land-use change, have been
relatively flat from 2014 to 2016, atmospheric
concentrations saw a record increase in 2015 and
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Warmning signs for stabilizing global CO, emissions
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Adtribu 30 !m‘.;h\ Abs!rﬂc‘.
;\"‘..“’:‘l::;‘:,ﬁ‘,:lw""“ Carbon dioxide (CO,) emissions from fossil fuels and industry comprise ~90% of all CO, emissions
faimanatibutien' from human activities. For the last three years, such emissions were stable, despite continuing growth
:m.w:il:;r;)lh]iwnu\ in the global economy, Many positive trends contributed to this unique hiatus, including reduced
coal use in China and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon
@_® ] renewables such as wind and solar. However, the temporary hiatus appears to have ended in 2017. For
2017, we project emissions growth of 2.0% (range: 0.8%—2.9%) from 2016 levels (leap-year
adjusted), reaching a record 36.8 £ 1.8 Gt CO,. Economic projections suggest further emissions
growth in 2018 is likely. Time is running out on our ability to keep global average temperature

increases below 2 °Cand, even more immediately, anything close to 1.5°C.

https://doi.org/10.1088/1748-9326/2a9662
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All the data is shown in billion tonnes CO, (GtCO,)
1 Gigatonne (Gt) = 1 billion tonnes = 1 X 101°>g = 1 Petagram (Pg)
1 kg carbon (C) = 3.664 kg carbon dioxide (CO,)

1 GtC = 3.664 billion tonnes CO, = 3.664 GtCO,

(Figures in units of GtC and GtCO, are available from http://globalcarbonbudget.org/carbonbudget)

Most figures in this presentation are available for download as PDF or PNG
from tinyurl.com/GCB17figs along with the data required to produce them.

Disclaimer

The Global Carbon Budget and the information presented here are intended for those interested in
learning about the carbon cycle, and how human activities are changing it. The information contained
herein is provided as a public service, with the understanding that the Global Carbon Project team make
no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability
of the information.
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Perturbation of the global carbon cycle caused by anthropogenic activities,
averaged globally for the decade 2007-2016 (GtCO,/yr)

Global carbon dioxide budget

(gigatonnes of carbon dioxide per year)

2007-2016
Fossil fuels & Atmospheric Land sink
industry growth 112+ 3.0 Budget
343+2.0 7235052 Land-use Imbalance
B change 2.1 *
Ocean sink

875210

Geological
reservoirs

The budget imbalance is the difference between the estimated emissions and sinks.
Source: CDIAC; NOAA-ESRL; Le Quéré et al 2017; Global Carbon Budget 2017
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Fossil Fuel and Industry Emissions



crosat|carson  Emissions from fossil fuel use and industry

PROJEC

Global emissions from fossil fuel and industry: 36.2 + 2 GtCO, in 2016, 62% over 1990
® Projection for 2017: 36.8 + 2 GtCO,, 2.0% higher than 2016

0 Data: CDIAC/IGCP/BP/USGIS
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Projection 2017
36.8 Gt CO,

A 2.0% (0.8%—3.0%)

: 36.2 Gt CO,

Uncertainty is £5% for
one standard deviation
(IPCC “likely” range)

Estimates for 2015 and 2016 are preliminary. Growth rate is adjusted for the leap year in 2016.
Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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The top four emitters in 2016 covered 59% of global emissions
China (28%), United States (15%), EU28 (10%), India (7%)

Data: CDIAC/GCP

L China -0.3%

Growth over 2015

10+

USA -2.1%

EU28 -0.3%
 India +4.5%

CO, emissions (Gt CO,/yr)

0 T T T T T T
1960 1970 1980 1990 2000 2010 16

Bunker fuels are used for international transport is 3.1% of global emissions.
Statistical differences between the global estimates and sum of national totals are 0.6% of global emissions.
Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Global emissions from fossil fuels and industry are projected to rise by 2.0% in 2017
The global projection has a large uncertainty, ranging from +0.8% to +3.0%

Dgta: CDIAC/QCP . . . . |
16 Projected Gt CO, in 2017

¢ | All others 15.1
14- | A2.3% (+0.5% to +4.0%)

12+

10+

4 J/\M i
° | EU28 3.5

¥0.2% (-2.0% to +1.6%)

l“"'r ‘e :
2 - India 2.5
A2.0% (+0.2% t0 +3.8%)
0 ‘

1960 1970 1980 1990 2000 2010 17

CO, emissions (Gt CO,/yr)

Source: CDIAC; Jackson et al 2017; Le Quéré et al 2017; Global Carbon Budget 2017
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Countries have a broad range of per capita emissions reflecting their national circumstances

Dgta: CDIAC/IGCP
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Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Emissions per unit economic output (emissions intensities) generally decline over time
China’s intensity is declining rapidly, but is still much higher than the world average

Data: CDIAC/GCP/IEA/IMF
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0

19

70
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China 0.53

" USA 0.31

India 0.30
World 0.29
EU28 0.19

GDP is measured in purchasing power parity (PPP) terms in 2010 US dollars.
Source: CDIAC; IEA 2016 GDP to 2014, IMF 2017 growth rates to 2016; Le Quéré et al 2017; Global Carbon Budget 2017
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Emissions by country from 2000 to 2016, with growth rates indicated for the more recent
period of 2011 to 2016

Data: QDIAC/GCP
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Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Depending on perspective, the significance of individual countries changes.
Emissions from fossil fuels and industry.

Data: CDIAC/GCP/IMF
100% : :
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80% -

70% - -
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India
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40% - E U28
30% -
USA
20%

Proportion of global total

10% 1 " China

0% -
Cumulative Production Consumption Population GDP
10 1751-2015 2015 2015 2015 2015

GDP: Gross Domestic Product in Market Exchange Rates (MER) and Purchasing Power Parity (PPP)
Source: CDIAC; United Nations; Le Quéré et al 2017; Global Carbon Budget 2017
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Emissions in the US, Russia and Brazil declined in 2016
Emissions in India and all other countries combined increased

Data: CDIAC/GCP

W
o
o

India USA , Others

+0.11 -0.10 _p.o4 -0.04 +0.22

W
o
o

CO, emissions (Gt CO,/yr)
W
)]

World World
2015 2016

Figure shows the top four countries contributing to emissions changes in 2016
Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Emissions from OECD countries are about the same as in 1990
Emissions from non-OECD countries have increased rapidly in the last decade

Dgta: CDIAC/GICP

40
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Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Cumulative emissions from fossil-fuel and industry were distributed (1870-2016):
USA 26%, EU28 22%, China 13%, Russia 7%, Japan 4% and India 3%

Data; CDIAC/GCP

100%
"g 80%
= Japan
8 Russia
o)
5 EU28
S 40%
T
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O 20%
o

China

0%
1880 1900 1920 1940 1960 1980 2000 16
©®

Cumulative emissions (1990-2016) were distributed China 20%, USA 20%, EU28 14%, Russia 6%, India 5%, Japan 4%
‘All others’ includes all other countries along with bunker fuels and statistical differences
Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Cumulative emissions from fossil-fuel and industry (1870-2016)
North America and Europe responsible for most cumulative emissions, but Asia growing fast

Data: CDIAC/GCP
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The figure excludes bunker fuels and statistical differences
Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Share of global emissions in 2016:
coal (40%), oil (34%), gas (19%), cement (6%), flaring (1%, not shown)

Dlata: CDIAC/IGCP
16 1

 Coal 14.5Vv1.7%
Gt CO,in 2016

| Oil 12.5 a15%

141

121

101

Gas 7.0 A1.5%

CO,emissions (Gt COy/yr)

- Cement 2.0 A1.0%

1960 1970 1980 1990 2000 2010 16

Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Emissions by category from 2000 to 2016, with growth rates indicated for the more recent
period of 2011 to 2016

Data: QDIAC/GCPI
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Source: CDIAC; Jackson et al 2017; Global Carbon Budget 2017
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Energy consumption by fuel source from 2000 to 2016, with growth rates indicated for the
more recent period of 2011 to 2016

Data: BP
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Source: BP 2017; Jackson et al 2017; Global Carbon Budget 2017
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The biggest changes in emissions were from a decline in coal and an increase in oil

Data: CDIAC/GCP
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Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Global emissions growth has generally recovered quickly from previous financial crises
It is unclear if the recent slowdown in global emissions is related to the Global Financial Crisis

Data: CDIAC/IGCP/IEA/II\/IIF/PeterS etal. 2012
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Economic activity is measured in purchasing power parity (PPP) terms in 2010 US dollars.
Source: CDIAC; Peters et al 2012; Le Quéré et al 2017; Global Carbon Budget 2017
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The 10 largest economies have a wide range of emissions intensity of economic production

Data: CDIAC/GCP/UN

Data year: 2016
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Emission intensity: CO, emissions from fossil fuel and industry divided by Gross Domestic Product
Source: Global Carbon Budget 2017
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In the lead up to the IPCC’s Sixth Assessment Report new scenarios have been developed to

more systematically explore key uncertainties in future socioeconomic developments
140
= |

o) SSP5: Rapid growth ~ Mitigation SSP3: Regional rivalry J<6°C
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Five Shared Socioeconomic Pathways (SSPs) have been developed to explore challenges to adaptation and mitigation.
Shared Policy Assumptions (SPAs) are used to achieve target forcing levels (W/m?). Marker Scenarios are indicated.
Source: Riahi et al. 2016; I1ASA SSP Database; Global Carbon Budget 2017
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In the lead up to the IPCC’s Sixth Assessment Report new scenarios have been developed to
more systematically explore key uncertainties in future socioeconomic developments

lljata: SSP dgtabase (IIA$A)/GCP
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Shared Policy Assumptions (SPAs) are used to achieve target forcing levels (W/m?). Marker Scenarios are indicated.
Source: Riahi et al. 2016; I1ASA SSP Database; Global Carbon Budget 2017
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According to the Shared Socioeconomic Pathways (SSP) that avoid 2°C of warming,
global CO, emissions need to decline rapidly and cross zero emissions after 2050

lljata: SSP Dlatabase (IIASA)/GCP
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Source: Riahi et al. 2016; IIASA SSP Database; Global Carbon Budget 2017
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In recent years, CO, emissions have been almost flat despite continued economic growth
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The Kaya decomposition demonstrates the recent relative decoupling of economic growth
from CO, emissions, driven by improved energy intensity

0 Dlata: CDIAC/GICP/IEA/BP/II\/IIF
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Global Carbon Project

GWP: Gross World Product (economic activity), FFl: Fossil Fuel and Industry,
Energy is Primary Energy from BP statistics using the substitution accounting method
Source: Jackson et al 2017; Global Carbon Budget 2017
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The 10 most populous countries span a wide range of development and emissions per person

Data: CDIAC/GCP/UN
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Emission per capita: CO, emissions from fossil fuel and industry divided by population
Source: Global Carbon Budget 2017
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Key statistics

Emissions 2016

Region/Country Per capita Total -
tCO, per person GtCO, %
Global (with bunkers) 4.8 36.18 100
OECD Countries
OECD 9.8 12.56 34.7
USA 16.5 5.31 14.7
OECD Europe 7.0 3.42 9.5
Japan 9.5 1.21 3.3
South Korea 11.7 0.60 1.6
Canada 15.5 0.56 1.6
Non-OECD Countries
Non-OECD 3.6 22.25 61.5
China 7.2 10.15 28.1
India 1.8 2.43 6.7
Russia 11.4 1.63 4.5
Iran 8.2 0.66 1.8
Saudi Arabia 19.7 0.63 1.8
International Bunkers
Aviation and Shipping - 1.37 3.8 _

Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017
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Consumption-based Emissions

Consumption—based emissions allocate emissions to the location that goods and
services are consumed

Consumption-based emissions = Production/Territorial-based emissions minus
emissions embodied in exports plus the emissions embodied in imports
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Allocating fossil and industry emissions to the consumption of products provides an alternative perspective.
USA and EU28 are net importers of embodied emissions, China and India are net exporters.

Data: CDIAC/QCP/Peters et‘ al 2011
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Consumption-based emissions are calculated by adjusting the
standard production-based emissions to account for international trade
Source: Peters et al 2011; Le Quéré et al 2017; Global Carbon Project 2017
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Transfers of emissions embodied in trade from non-Annex B countries to Annex B countries grew at
over 11% per year between 1990 and 2007, but have since declined at over 1% per year.

Qata: CDIAC/G‘CP/Peters et ;Ial 2011
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Annex B countries were used in the Kyoto Protocol, but this distinction is less relevant in the Paris Agreement
Source: CDIAC; Peters et al 2011; Le Quéré et al 2017; Global Carbon Budget 2017
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Flows from location of generation of emissions to location of
consumption of goods and services

e Net transfers (MtCO.) '
importers - 1 exporters flows shown

-1000 -500 0 500 1000 in MtCO,

Values for 2011. EU is treated as one region. Units: MtCO,
Source: Peters et al 2012
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Flows from location of fossil fuel extraction to location of
consumption of goods and services

. |:~Jet transfelrs (MtCOz)’

. Tl e
exporters flows shown

o I
SIOIIG) importers X ! : :
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Values for 2011. EU is treated as one region. Units: MtCO,
Source: Andrew et al 2013
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Land-use Change Emissions
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Land-use change emissions are highly uncertain. Higher emissions in 2016 are linked to
increased fires during dry El Niflo conditions in tropical Asia
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Estimates from two bookkeeping models, using fire-based variability from 1997
Source: Houghton and Nassikas 2017; Hansis et al 2015; van der Werf et al. 2017;
Le Quéré et al 2017; Global Carbon Budget 2017
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Total global emissions: 40.8 + 2.7 GtCO, in 2016, 52% over 1990
Percentage land-use change: 42% in 1960, 12% averaged 2007-2016

Data: CDIAC/GCP
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Land-use change estimates from two bookkeeping models, using fire-based variability from 1997
Source: CDIAC; Houghton and Nassikas 2017; Hansis et al 2015; van der Werf et al. 2017;
Le Quéré et al 2017; Global Carbon Budget 2017
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Land-use change was the dominant source of annual CO, emissions until around 1950

Data:I CDIAC/G]ICP
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Others: Emissions from cement production and gas flaring
Source: CDIAC: Houghton and Nassikas 2017: Hansis et al 2015; Le Quéré et al 2017; Global Carbon Budget 2017
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Land-use change represents about 31% of cumulative emissions over 1870-2016,
coal 32%, oil 25%, gas 10%, and others 3%

Data: CDIAC/GCP
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Source: CDIAC: Houghton and Nassikas 2017: Hansis et al 2015; Le Quéré et al 2017; Global Carbon Budget 2017
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Closing the Global Carbon Budget



N

croeat(carson  Fate of anthropogenic CO, emissions (2007-2016)

PROJ

Sources| = |Sinks

17.3 GtCO, /yr

34.3 GtCO, /yr
’ A47%
88% ’

30% 16

11.2 GtCO, /yr

23%

8.7 GtCO,/yr

Budget Imbalance: 6%

(the difference between estimated sources & sinks) 2.1 GtCO,/yr
Source: CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Le Quéré et al 2017; Global Carbon Budget 2017
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Global carbon budget

Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean
The “imbalance” between total emissions and total sinks reflects the gap in our understanding

Data: CDIACIINOAA—ESFI{L/GCP
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Source: CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Joos et al 2013;
Khatiwala et al. 2013; DeVries 2014; Le Quéré et al 2017; Global Carbon Budget 2017
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The sinks have continued to grow with increasing emissions, but climate change will affect

carbon cycle processes in a way that will exacerbate the increase of CO, in the atmosphere
0 Data: QCP
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The budget imbalance is the total emissions minus the estimated growth in the atmosphere, land and ocean.
It reflects the limits of our understanding of the carbon cycle.
Source: CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Le Quéré et al 2017; Global Carbon Budget 2017
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The atmospheric concentration growth rate has shown a steady increase
The high growth in 1987, 1998, & 2015-16 reflect a strong El Nifio, which weakens the land sink

Data: NOAA-ESRL/GCP
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Source: NOAA-ESRL; Global Carbon Budget 2017
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The ocean carbon sink continues to increase

8.7+2 GtCO,/yr for 2007-2016 and 9.6+2 GtCO,/yr in 2016

Dlata: GCP . . . . . .
. individual ocean models
E’ 10 this carbon budget
Cc)\l pCO,-based flux products
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Global Carbon Project

Source: SOCATV5; Bakker et al 2016; Le Quéré et al 2017; Global Carbon Budget 2017

Individual estimates from: Aumont and Bopp (2006); Buitenhuis et al. (2010); Doney et al. (2009); Hauck et al. (2016); llyina et al. (2013); Landschitzer et al. (2016); Law et al. (2017); ; Rodenbeck et al. (2014).
Séférian et al. (2013); Schwinger et al. (2016). Full references provided in Le Quéré et al. (2017).
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The land sink was 11.2+3 GtCO2/yr during 2007-2016 and 10+3 GtCO,/yr in 2016
Total CO, fluxes on land (including land-use change) are constrained by atmospheric inversions

Data: GCP
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Source: Le Quéré et al 2017; Global Carbon Budget 2017

Individual estimates from: Chevallier et al. (2005); Clarke et al. (2011); Guimberteau et al. (2017); Hansis et al. (2015); Haverd et al. (2017); Houghton and Nassikas (2017); Jain et al. (2013);
Kato et al. (2013); Keller et al. (2017); Krinner et al. (2005); Melton and Arora (2016); Oleson et al. (2013); Reick et al. (2013); Rodenbeck et al. (2003); Sitch et al. (2003); Smith et al. (2014);
Tian et al. (2015); van der Laan-Luijkx et al. (2017); Woodward et al. (1995); Zaehle and Friend (2010). Full references provided in Le Quéré et al. (2017).
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Total land and ocean fluxes show more interannual variability in the tropics

Data: GCP
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Source: Le Quéré et al 2017; Global Carbon Budget 2017

Individual estimates from: Aumont and Bopp (2006); Buitenhuis et al. (2010); Chevallier et al. (2005); Clarke et al. (2011); ; Doney et al. (2009); Guimberteau et al. (2017); Hauck et al. (2016);
Haverd et al. (2017); Ilyina et al. (2013); Jain et al. (2013); Kato et al. (2013); Keller et al. (2017); Krinner et al. (2005); Landschitzer et al. (2016); Law et al. (2017); Melton and Arora (2016);
Oleson et al. (2013); Reick et al. (2013); Rodenbeck et al. (2003); Rodenbeck et al. (2014); Séférian et al. (2013); Schwinger et al. (2016); Sitch et al. (2003); Smith et al. (2014); Tian et al.
(2015); van der Laan-Luijkx et al. (2017); Woodward et al. (1995); Zaehle and Friend (2010). Full references provided in Le Quéré et al. (2017).
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Large and unexplained variability in the global carbon balance caused by uncertainty and
understanding hinder independent verification of reported CO, emissions

Data: GCP
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The budget imbalance is the carbon left after adding independent estimates for total emissions, minus the atmospheric
growth rate and estimates for the land and ocean carbon sinks using models constrained by observations
Source: Le Quéré et al 2017; Global Carbon Budget 2017
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The cumulative contributions to the global carbon budget from 1870
The carbon imbalance represents the gap in our current understanding of sources and sinks

Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013
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The global CO, concentration increased from ~277ppm in 1750 to 403ppm in 2016 (up 45%)
2016 was the first full year with concentration above 400ppm

Qata: Scripp§/NOAA—ESIRL

’é‘ 400 1 -
o
£
C 3801 i
O
JEr—
©
E  360- -
@ Monthly mean
O
-
O
O 340- -
QA
EB Seasonally
390 - corrected trend i

1960 1970 1980 1990 2000 2010 2020

Globally averaged surface atmospheric CO, concentration. Data from: NOAA-ESRL after 1980;
the Scripps Institution of Oceanography before 1980 (harmonised to recent data by adding 0.542ppm)
Source: NOAA-ESRL; Scripps Institution of Oceanography; Le Quéré et al 2017; Global Carbon Budget 2017
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Atmospheric CO, concentration had record growth in 2015 & 2016 due to record high
emissions and El Niflo conditions, but growth is expected to reduce due to the end of El Nifio

Data: GCP/Tans & Keeling 2017
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Our ability to detect changes in CO, emissions based on atmospheric observations is limited
by our understanding of carbon cycle variability

30 1 1 1 1
— 63" v
§ 2 g ;SQ'.QQ\D
S 25 - ’a\o\\'\’}\j—\" i 1.0%/yr
C]
o 201 -
(4] .
1 T L B 0.0%/ yr
o , g
+ 15 - Observations -
% Reconstructed
O -1.0%l/yr
L 101 -
L))
°
3
g 5 1 2017 2030
<
0 T T T T
1960 1980 2000 2020 2040

Observations show a large-interannual to decadal variability, which can only be partially reconstructed through the global
carbon budget. The difference between observations and reconstructed is the “budget imbalance”.
Source: Peters et al 2017; Global Carbon Budget 2017
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Weekly CO, concentration measured at Mauna Loa stayed above 400ppm throughout 2016
and is forecast to average 406.8 in 2017

Data: Tans & Keeling / Scripps
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In 2017, CO, emissions from fossil fuels and industry
are projected to grow by 2.0% (+0.8 to +3.0%).
This follows three years of nearly no growth (2014-2016)
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