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Biomass and soil carbon

Our proposed nine priority areas of research identified for the decade are:

Net primary productivity (NPP)
1) Reducing uncertainty in Australian baseline net primary productivity
2) Understanding the temperature-dependence of NPP

Elevated [CO2]
3) Are C-stocks in natural ecosystems increasing under increasing [CO2] ? 
4) Coupling the C cycle with the N & P cycles

Soil carbon dynamics
5) Long term temperature response of SOM decomposition
6) Fraction of above ground litter taken into soil  - mechanisms
7) Formation and fate of black carbon (char)
8) Understanding and modeling SOC-saturation to additional inputs

Disturbance
9) Quantify & model recovery of the C-cycle of native vegetation to 

disturbances induced by climate change and management.
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Priority 1: Reducing uncertainty in Australian 
baseline net primary productivity

To be useful in ecosystem dynamics and coupling to GCMs, 
terrestrial carbon cycle models must work at the level 
of detail of:

• fixing carbon dioxide into vegetation (ie NPP) 
• losing carbon via decomposition (heterotrophic respiration).

How well do we know baseline Australian NPP?
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Figure 1 

3.3 Gt C yr-1

0.7 Gt C yr-1

Comparison of 12 models of long term average NPP for Australia

(Roxburgh SH et al. (2004) A critical overview of model estimates of net primary productivity for the
Australian continent. Functional Plant Biology 31:1043-1055)
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Figure 1 

3.3 Gt C yr-1

0.7 Gt C yr-1

Comparison of 12 models of long term average NPP for Australia

(Roxburgh SH et al. (2004) A critical overview of model estimates of net primary productivity for the
Australian continent. Functional Plant Biology 31:1043-1055)
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CenW (1.76 Gt C yr-1) Century (1.92 Gt C yr-1)

Models that yield similar continental totals can do so via substantially
different distributions of NPP around the country.
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Model Mean Global 
NPP (GtC/yr) 

Mean Australian 
NPP (GtC/yr) 

Spatial 
distribution 

Hybrid 49.1 0.38 

 

Triffid 51.5 1.19 

 

SDGVM 50.3 1.39 

 

LPJ 60.1 1.71 

 

IBIS 59.9 1.78 

 

VECODE 

61.4 2.85 

 

 Legend (gC/m2/yr)  
0              1800 

re 4 

Global DGVMs also 
yielded very 
different continental
average NPP and 
spatial distribution
of NPP.

International DGVM results for Australia 
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Conclusion:
• Continental NPP estimates varied by an order of magnitude.
• The continental distribution of modeled NPP varied greatly.

However:
• The models varied as to whether they were modelling actual vegetation

or notional pre-European vegetation.

• The environmental data inputs varied.

Further steps:
• Need tighter specification of NPP model objectives and inputs (esp. rainfall).

• In the longer term there must be a concerted stratified effort to ground-
truth annual NPP around the country for model improvement.

• This needs to be by direct ecosystem measurements augmented with satellite 
monitoring and, where suitable, eddy flux  measurements.

• Incorporating long-term ecosystem manipulation experiments in some of the 
NPP study sites would be valuable (eg water, N, P, CO2 treatments).

• A key Australian question is why above-ground NPP of evergreen forests is 
lower than for N-hemisphere forests at the  same rainfall. 5.0



Priority 2: Understanding the temperature-dependence
of NPP

To model the interactive effects of global warming on  vegetation, 
it is necessary to understand how warming affects NPP.

We must learn to distinguish:
• short term responses of growth to temperature

from 
physiologically acclimated responses.

• physiologically acclimated responses to temperature
from 

genetically adapted ecosystem responses.

• partially acclimated/adapted responses
from

fully genetically-adapted community responses.
5.5
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Kerkhoff AJ et al (2005) Global Ecol and Biogeog. 14:585-598  

Aboveground biome-NPP is insensitive to 
mean growing-season temperature (>0oC)
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Priority 2 cont’d: Understanding the temperature-dependence of NPP

Kerkhoff et al (2005) conclude that:
1) When the temperature is above freezing, adapted ecosystem NPP

is independent of temperature. 

and they proposed from their analysis that:

2) This counterintuitive result is because the reduction in 
photosynthetic capacity with decreasing temperature
is counteracted by:

“the precipitous non-intuitive increase in 
N-productivity with decreasing temperature 
and its correlation with phytomass P-concentration”.

7.0

Further steps:  We are far from clear about how to model 
annual adapted-NPP change with  increasing temperature.  
It needs a concerted international field research effort.



Priority 3: Are C-stocks in natural ecosystems 
increasing under increasing
atmospheric  [CO2]?
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Priority 3: Are natural ecosystems increasing C-stocks 
under increasing atmospheric [CO2]?

Houghton RA (2007) Balancing the global carbon budget.  
Annual Review of Earth and Planetary Science 35:313-347

Net terrestrial flux
by inverse modelling
(Joos et al 1999)

Net deforestation
(Houghton 2003)

Residual terrestrial
C-sink by difference
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• What is causing the progressive increase  
in the “residual terrestrial C-sink”?

• To what degree is the increasing 
CO2 concentration  contributing to it?

• When will the residual sink saturate or 
become a source?

Priority 3(cont’d): Are natural ecosystems increasing 
C-stocks  under elevated [CO2]? 



Kirschbaum, M. 2004
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+ 20% response of ecosystem NPP
to a 200 ppm CO2 enrichment over several years 

for all the plantation field FACE sites.
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But, does elevated CO2 cause a forest to grow faster 
to a larger maximum biomass or faster to the same biomass?
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Further steps: Need long term (>10 yr) forest-FACE 
studies set in a forest modelling framework.



Priority 4: Coupling the C cycle with the N & P cycles

• As with the temperature response, to understand 
the CO2 response of NPP and biomass, 
N & P feedbacks need to be taken into account.

• Need to evaluate the competing hypotheses for
the nitrogen relationship to the CO2 fertilising 
effect on climate change timescale, namely:

the “N-cycle tracks the C-cycle” hypothesis 
(Gifford 1992)

the “Progressive N-limitation” hypothesis 
(Luo 2004)

9.5



“N-cycle tracks the C-cycle”

Priority 4 (cont’d) :  Coupling the C cycle with the N & P cycles

• Depends on ecosystem N-fixation/retention being
paced by the C:N ratio of the system.  
CO2 fertilisation increases ecosystem C:N ratio.

• May also be dependent on the phosphorus availability.

Does the CO2 response of plant growth and N-fixation
disappear when phosphorus supply is low?

Results vary…..needs resolution.

10

Further steps: Long term forest-FACE studies should 
incorporate detailed N-cycle observations



Priority 5.  Long term temperature response 
of SOM decomposition

A consensus has not yet been reached

Some authors of DGVMs are making much of the high 
temperature sensitivity of heterotrophic respiration 
found in short term laboratory studies, leading to a 
strong long term positive feedback onto global warming in 
the modelled global C-cycle.
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But:

there are several reasons for caution about this:
• Decline of short term temperature sensitivity with increasing temperature

• Interrelation with soil water relations and other environmental constraints

• Instantaneous response vs long term response

* the soil nutrient feedback link (esp. N-mineralisation)?

* differential depletion of active, passive & recalcitrant pools?

* temperature sensitivity of SOC protection mechanisms

* soil microbial population adaptation to gradual warming?

Priority 5 (cont’d).  Long term temperature response of SOM decomposition 
rates
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Priority 5 (cont’d).  Long term temperature response of  SOM decomposition rates

Further steps:
Prior to establishment of further experiments, 
there needs to be a much more thorough analysis 
of the large amount of existing soil respiration & 
decomposition data to provide guidance for 
better experimental design.
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Priority 6. Fraction of above-ground litter taken into soil
– mechanisms and quantification

• The distinction between above- and below-ground 
decomposition  seems to be a little-addressed subject
in carbon cycle modelling.

• Above-ground and below-ground litter are subject
to very different biotic and abiotic environments.

Further steps: Need much primary observational 
data to guide algorithm development differentiating
between above- and below-ground decomposition.
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Priority 7.   Formation and fate of black carbon (char)

• Char formation is highly episodic – temporally and spatially
• Forms the longest lived form of C in ecosystems
• Difficult to deal with in modelling

13



Forest fire produces much lumpy char - charcoal



Grass fires produce microscopically fine black C, which will have very
different functional and decomposition properties from lumpy charcoal

14



Priority 7 (cont’d).   Formation and fate of black carbon (char)

Char – key points
• Up to 10% (but often <3%) of carbon consumed by 
fire is  converted to char

• For Australia, char formation is equivalent to 
~6% annual net GHG emissions

Further steps.
Long term studies required: 
- rates of char formation under different 
burning conditions in important ecosystems.

- rates of decomposition & transport of char in 
contrasting environments in soils & sediments
and with different char types.
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Priority 8. Understanding and modeling SOC-saturation 
to additional inputs

There is much talk about saturation of organic matter in 
soil, above which further inputs of litter are “puffed off”.

• Is it true?

• How does it come about?  

• Is it important enough to be represented in DGVMs? 

• If so, how should it be represented in models?
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Priority 9. Quantify & model recovery of the C-cycle of
to disturbances induced by climate change
and management.

Management–induced disturbances
• LUC e.g. woody/non-woody conversions
• Changed systems e.g. new crops/rotations

Climate change–induced disturbance
• Direct e.g. temperature stress, drought, flood
• Indirect e.g. fire, pests/diseases

15



Areas of disturbance
• Fire in forests/grasslands (40-100 

Mha/yr)
• Woody conversions (<0.5 Mha/yr)
• ‘Intensive’ agriculture (?% of 40 

Mha/yr)
• Forest harvesting (~100,000 ha/yr)
• Drought/insect impacts in native 

vegetation (??)
16

Priority 9 (cont’d) . Quantify & model recovery of C-cycle to disturbances 
induced by climate change and management.



Further steps:
• Define a minimum set of important vegetation 

types/classes that can be used for specific 
purposes.

• Develop a capacity to model change by coupling 
‘ecological’ models (describing the nature 
of the response) with biophysical models 
(defining the rate of the response).

Priority 9 (cont’d) . Quantify & model recovery of C-cycle to 
disturbances induced by climate change and management.



Biomass and soil carbon
Priority ranking for 10 year research goal:

A) Those with Australia-specific focus
• Reducing uncertainty in Australian baseline primary productivity
• Are C-stocks in Australian natural ecosystems increasing under increasing 

[CO2] ?
• Quantify & model recovery of C-cycle to disturbances induced by climate 

change and by management.
• Formation and fate of black carbon (char)

B) Generic issues that Australia can contribute to
• Coupling the C cycle with the N & P cycles
• Temperature response of SOM decomposition rates 
• Understanding the temperature-dependence of NPP

C) Important areas of lesser imperative
• Fraction of above ground litter taken into soil  - mechanisms
• Understanding and modeling SOC-saturation to additional inputs
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Thank you





Acacia auriculiformis

Acacia mangium

Ambient CO2

Elevated CO2

From Nguyen NT, Mohapatra PK, Jujita K (2006).  Elevated CO2 alleviates the effects of low P 
on the growth of N2-fixing Acacia auriculiformis and Acacia mangium.  Plant and Soil 285:369-379.


