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Role of the Land Surface Scheme (LSS) in GCM

LSS calculates exchanges of
moisture, energy,

momentum and trace gasses

at the land-atmosphere interface.

Land surface important characteristics for
calculation of SEB:

albedo,
leaf area index, canopy height,
surface moisture.

Key task isto calculate 1

Surface Energy Balance:

S@net + L lnet — Gl = Hﬁ+ kEﬂ+ Ccg 0Tg/ot



Role of the Land Surface Scheme in GCM
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Time scale of biosphere-atmosphere interactions
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Potentially important feedbacks in
coupled climate-carbon cycle system.

Response of the
terrestrial biosphere to:

* Increasing CO2
e climate change
 climate variability
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C4AMIP Phase Il results
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Extra CO, results in extra warming — a positive feedback



Are those predictions realistic?
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Effects of CO, fertilization on
climate (Bala et al. 2006)

CO2 fertilization

1 |

Increase canopy LAl |—>

Reduce albedo/gs

1 |
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| |
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| |
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At decadal time scale,
cooling > warming, net
cooling

At century time scale,
warming > cooling, net
warming




Fire disturbance

Fires affected:

- surface albedo & vegetation
properties

- released CO2 & other
trace gases and aerosols

Fires in southeast Australia February, 2003
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The general structure of CABLE

Interface to the GCM

Canopy
radiation;
sunlit & shaded
visible &

near infra-red,
albedo

SEB & fluxes;
for soil-vegetation
system:

AEf , Hf, AEg, Hg:
evapotranspiration

Carbon
fluxes;

GPP, NPP,NEFR

snow

Kowalczyk et al., CMAR Research Paper 013, 2006



Vegetation parameters required for CABLE

VEGETATION TYPE CC veg

broad-leaf evergreeen trees
broad-leaf deciduous trees
broad-leaf and needle-leaf trees
needle-leaf evergreen trees
needle-leaf deciduous trees
broad-leaf trees with ground cover
Ishort-vegetation/C4 grass (savanna)

ONHhON-

7 perennial grasslands
8 broad-leaf shrubs with grassland
9 broad-leaf shrubs with bare soil
10 tundra
11 bare soil and desert Geographica"y exp"cit
12 agricultural/c3 grassland data
13 ice
A grouping of species that show close LAl — leaf area index

similarities in their response to environmental
control have common properties such as:

- vegetation height

- root distribution

- max carboxylation rate

- leaf dimension and angle, sheltering factor,

- leaf interception capacity a — canopy albedo

fractional cover
C3/C4 - fraction

the model calculates:
z0 — roughness length



Soll parameters required for CABLE

Soll types: Soil Properties:
- water balance:
Coarse sand/Loamy sand wilting point
Medium clay loam/silty clay loam/silt loam field capacity
Fine clay saturation point
Coarse-medium sandy loam/loam hydraulic conductivity at saturation
Coarse-fine sandy clay matric potential at saturation
Medium-fine silty clay
Coarse-medium-fine sandy clay loam - heat storage:
Organic peat albedo,
Permanent ice specific heat, thermal conductivity
density
- soil depth

Post, W., and L. Zobler, 2000
Global Soil Types




Australian Community Climate Earth System
Simulator (ACCESS) modelling program

Diagram to right shows
‘scope’

Down-

Fundamentally conceivedas soummsmm .- scaling
a modelling ‘system’ that
meets a variety of needs.
Priority needs are:
Numerical weather
prediction

«Climate change simulation
capability

Collaboration between key
institutions (Bureau, CSIRO,
Australian Universities,....)

Graphics
Visualisation




ACCESS Climate change
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ACCESS

Key Timelines Coupled Modelling

2006

2007
2008

2009
2010

Port component models to common
computing environment and test

Construct coupled system

Test new physics options in coupled
system

Tune coupled system

Perform and submit IPCC AR5 runs
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Model forcing and modelled climate In
CAMIP phase | simulation
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Model forcing and modelled climate In
CAMIP phase | simulation

Sea Surface Temperature:

Land air temperature
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Flux (PgCyr™1)

Prescribed fluxes
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Flux (PgCyr™1)

—4

Prescribed fluxes

Fossil
Land—use
Ocean

1960 1970 1980 1990

200
1960 Time 2000

Fossil emissions,
Andres et al. 1995,
Marland et al., 2005,
3.75x2.5°, annual

Land-use, McGuire et al. 2001,
average 3 models, only
available until 1992, only
cropland establishment,
abandonment

Ocean emissions,
median from 11 models
OCMIP2, 2x2°, monthly,

, o IAV in ocean model
forcing



Carbon fluxes through 20t century

1 GPP - photosynthesis
increases as atmospheric
CO, increases
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Carbon fluxes through 20t century
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Seasonal cycle: amplitude and
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Month of minimum Peak to peak amplitude (ppm)
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Seasonal cycle: NH sites
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Seasonal cycle: southern
hemisphere
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Seasonal cycle: southern

South Pole

hemisphere
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Concentration (ppm)

Annual growth (ppm)
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L0, at Mauna Loa
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What did we learn

e Seasonal cycle in SH Is Incorrect;
e Soll respiration Is too simple;

e Savannah biome: NPP too large, perhaps
we need a better representation of C3/C4
LAI dynamics

Law R., Kowalczyk E., Wang Y.-P.,
Tellus, 58B, 427-437, 2006



Next steps

Model development in the CSIRO

 Couple CABLE to HadGAM;

 Couple CABLE with CASACNP and a
global phenology model;

» A systematic method for estimating model
parameters and model errors;

e Assist universities in coupling LPJ with
CABLE+CASACNP+Phenology;

* All components must be ready by middle
2009 for further tuning for IPCC ARS.




Thank you

Eva.kowalczyk@csiro.au
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