

Marine carbon cycle climate feedbacks – magnitudes and timescales

IMPORTANT:

If you wish to use any parts of this presentation, please send an email to the author requesting permission, original pot files, and explanations associated with the slides. Please

original ppt files, and explanations associated with the slides. Please, ensure proper citation of this presentation and sources within. Email: heinze@gfi.uib.no

Christoph Heinze

University of Bergen, Norway, Geophysical Institute & Bjerknes Centre for Climate Research

What I will talk about

1. Feedback:

Definition and main focus on marine fossil fuel CO₂ uptake kinetics

- 2. The feedback zoo
- 3. The role of biological vs. physical feedbacks

1. What is a feedback ?

Feedback is a process whereby some proportion - or in general, function – of the output signal of a system

is passed (fed back) to the input.

Often this is done <u>intentionally</u>, in order to <u>control the</u> <u>dynamic behaviour of the system</u>.

Feedback loops and stability

Fossil fuel CO₂ and the oceanic carbon sink: "<u>uptake kinetics</u>" vs. "*ultimate uptake capacity*"

Mauna Loa Observatory, Hawaii, USA

Source: Dave Keeling and Tim Whorf (Scripps Institution of Oceanography)

<u>Ultimate storage capacity</u> of the ocean for anthropogenic CO_2 :

CO₂ partitioning after re-equilibration.

11/12 of a perturbation in the atmospheric CO2 content will be taken up by the ocean.

1/12 will remain in the atmosphere.

(see e.g. Bolin and Eriksson, 1959)

Through repeated ocean mixing cycles and re-dissolution of CaCO₃ sediment from the ocean floor.

Given long enough time – i.e. after ca. 100,000 years. For mankind of limited interest!!!!!!!!

<u>Uptake kinetics:</u> important for mankind ! describes how quickly CO_2 is removed from the atmosphere by the ocean

Fig. 24. Emission scenarios corresponding to logistic input functions with two different time scales (curves a and b), a constant input at present-day levels (curve c) and an exponentially decreasing input up to the year 2018, succeeded by a constant input at half the present-day level (curve d)

Fig. 25. Atmospheric CO_2 concentrations (ppm) for the four emission scenarios of Fig. 24 computed with the full model (*full curves*) and the equivalent linear input response function method (*dotted curves*). The linear input response function is seen to underestimate the amplitude and time scale of the response for higher pCO_2 levels, but is a good approximation for small changes

Maier-Reimer and Hasselmann, 1987, Clim.Dyn., 2: 63-90 An abiotic model

The feedback zoo

Climate change induced forcings for the marine carbon cycle:

Warming of the ocean surface water

Freshening of the ocean surface

Rising CO₂ and acidification (pH lowering)

Changes in cloud cover, sea ice cover, and incoming solar radiation

Increasing stratification and reduction in large scale meridional overturning, shift of shelf regimes

Biogeochemical forcing (river loads, aoelian deposition, dust, micronutrients)

Destabilization of methane gas hydrates

Purposeful CO_2 storage in the ocean as an anthropogenic feedback to rising atmospheric p CO_2

Process	Primary forcings
Change in CO ₂ solubility and dissociation (buffer factor)	Warming, atmospheric pCO ₂ increase
Biological export production of POC, DOC storage, particle flux mode	Warming, pCO ₂ increase, runoff loads, dust deposition, slowing of ocean circulation, change in radiation
Biological export production of PIC (CaCO ₃), particle flux mode	pCO ₂ increase (pH decrease
Coral growth	Warming, atmospheric pCO ₂ increase (pH decrease)
Dissolution of CaCO ₃ sediments	pCO ₂ increase (pH decrease)
DMS production, other secondary feedbacks	CaCO ₃ production, dust flux
Destabilization of gas hydrates	Warming, pressure/circulation
Purposeful CO ₂ storage	Human attempt to mitigate

Process	Feedback
Change in CO ₂ solubility and dissociation (buffer factor)	+
Biological export production of POC, DOC storage, particle flux mode	unknown
Biological export production of PIC (CaCO ₃), particle flux mode	unknown
Coral growth	_
Dissolution of CaCO₃ sediments	
DMS production, other secondary feedbacks	unknown
Destabilization of gas hydrates	+
Purposeful CO ₂ storage	unknown

Process	Quantitative potential
Change in CO ₂ solubility and dissociation (buffer factor)	high
Biological export production of POC, DOC storage, particle flux mode	unknown
Biological export production of PIC (CaCO ₃), particle flux mode	unknown
Coral growth	unknown
Dissolution of CaCO₃ sediments	high
DMS production, other secondary feedbacks	unknown
Destabilization of gas hydrates	unknown
Purposeful CO ₂ storage	unknown

Process	Reaction time scale
Change in CO ₂ solubility and dissociation (buffer factor)	Immediate (-1000 yr)
Biological export production of POC, DOC storage, particle flux mode	0-1000 yr
Biological export production of PIC (CaCO ₃), particle flux mode	0-1000 yr
Coral growth	0-100 yr
Dissolution of CaCO₃ sediments	1,000-100,000 yr
DMS production, other secondary feedbacks	0-1000 yr
Destabilization of gas hydrates	unknown
Purposeful CO ₂ storage	unknown

Process	Certainty
Change in CO ₂ solubility and dissociation (buffer factor)	certainty
Biological export production of POC, DOC storage, particle flux mode	indication
Biological export production of PIC (CaCO ₃), particle flux mode	indication
Coral growth	certainty
Dissolution of CaCO₃ sediments	certainty
DMS production, other secondary feedbacks	indication
Destabilization of gas hydrates	potential
Purposeful CO ₂ storage	potential

Process	Certain + quantitatively important for C in atmosph. + now relevant
Change in CO ₂ solubility and dissociation (buffer factor)	+
Biological export production of POC, DOC storage, particle flux mode	-
Biological export production of PIC (CaCO ₃), particle flux mode	
Coral growth	
Dissolution of CaCO ₃ sediments	-
DMS production, other secondary feedbacks	-
Destabilization of gas hydrates	-
Purposeful CO ₂ storage	-

Beauchamp, 2004, *C.R. Geoscience*

Milkov, 2004, Earth Science Reviews

The role of biological vs. physical feedbacks

extreme scenarios (with the HAMOCC2 GCM)

anthropogenic CO₂ + slowing down of ocean circulation

Extreme scenario 1: switching off biology

Extreme scenario 2: "maximising biology"

Circulation as in standard, but:

- no ice cover

standard

- V_{max} x 10 (nutrient uptake velocity)
- particle sinking velocities x 10
- maximum rain ratio CaCO₃:POC / 10

max. biology after 10,000 years

Extreme scenario 2: "maximising biology"

Circulation as in standard, but:

- no ice cover
- V_{max} x 10 (nutrient uptake velocity)
- particle sinking velocities x 10
- maximum rain ratio CaCO₃:POC / 10

Physical vs. biological feedback during rising pCO₂ and slowing circulation

Biological feedback due to slowing circulation on long timescales

A preliminary conclusion:

The maximum effect of biological feedbacks on the kinetics of anthropogenic CO₂ uptake by the oceans is about

- -200 to + 400 ppm
- within 100-1000 years

But: for after all quite extreme and unrealistic scenarios.

Riebesell/Zondervan

CaCO₃ feedback

Heinze GRL 2004

In year 2250:

50% of pre-industrial CaCO3 production

- -20 ppm without
- -3 ppm with ballast effect

org. C penetration depth [m] yr 1750 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W

org. C penetration depth [m] yr 2250 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W

300

