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• Temperate forests are an important carbon 
pool and carbon sink

• What will be the effect of changing climate 
and climate variability?

Carbon gains/losses are affected by climate and 
climate-induced disturbances e.g. fire, insects

Positive feedbacks between climate and net 
carbon emissions

Feedbacks between carbon and water cycles

Crossing thresholds

Are forest carbon sinks vulnerable ?Are forest carbon sinks vulnerable ?



Measurements of the coupled carbon and 
water budgets in a temperate Eucalypt

forest showing the effect of drought and 
disturbance

1. Tumbarumba Flux Tower site

2. Climate and Drought

3. Response of Carbon Cycle

4. Forest Growth Dynamics

5. Implications and Concluding Comments



1. Tumbarumba Flux Tower1. Tumbarumba Flux Tower
In Bago State Forest, NSW

• Annual precipitation is  ∼ 1000 mm
• Elevation: 1200 m
• 40 m tall, broad-leaf, evergreen forest: 

Eucalyptus delegatensis, E. dalrympleana
• LAI: trees ∼ 1.4; total ∼ 3

Measurements:
• Radiation fluxes and meteorology
• Turbulent CO2, water, heat, momentum 

fluxes
• CO2, temperature and wind profiles 
• Terrestrial C-budget:

– Pools: soil, litter, canopy, roots, biomass
– Fluxes: respiration, litterfall

Ozflux



Long-term (65 y) rainfall 
distribution:

2002 – 2003 rainfall in the 
lowest 5th percentile

2000 – 2006 spans 5th – 70th

percentiles 

Departure of annual rainfall 
from long-term mean shows 
that much of the last decade 
has been in a dry phase

2. Climate and Drought 2. Climate and Drought 
Rainfall distribution and deficitsRainfall distribution and deficits
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2. Climate and drought2. Climate and drought
Rainfall and soil moistureRainfall and soil moisture
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2. Climate and drought2. Climate and drought
Daily maximum air temperatureDaily maximum air temperature
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2. Climate and Drought2. Climate and Drought
EvaporationEvaporation

Potential evaporation combines all meteorological drivers (radiation, 
temperature, humidity deficit) 

Difference between actual and potential evaporation illustrates 
combined effects of meteorology and soil water deficit
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2. Climate and Drought2. Climate and Drought
NDVINDVI

MODIS NDVI indicates a vegetation response, similar 
to the regional NDVI anomalies of Briggs et al
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3. Response of carbon cycle: NEE3. Response of carbon cycle: NEE
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3. Components of NEE3. Components of NEE

NEE can be calculated as:

1. Eddy flux: -Fc

2. Difference between fluxes: GPP – (Ra + Rh)

3. Change in pools: ∆B + ∆S + ∆L

Aim is to link ground and tower measurements 
to estimate NEE
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Respiration ratesRespiration rates
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Annual increment in biomass carbonAnnual increment in biomass carbon
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Seasonal patterns of growthSeasonal patterns of growth
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Additional 
leaf fall:

27%
of annual

total

Disturbance by insect damageDisturbance by insect damage

psyllid leaf necrosis
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Change in LAI: 2006 Change in LAI: 2006 -- 20022002
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• Current productivity:
Increment of live trees
Mortality

⇒ Consequences for annual variability   
in C sinks

• Future productivity:
Stand structure
Recruitment

⇒ Consequences for continuity of timber  
production and trends in C sinks

4. Forest Growth Dynamics4. Forest Growth Dynamics



Forest growth dynamics: Forest growth dynamics: 
Biomass C Increment (t C 3 yBiomass C Increment (t C 3 y--11))
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Forest growth dynamics:Forest growth dynamics:
Mortality Mortality 

Higher mortality during drought in most age classes,
not just self-thinning of young stands.
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5. Carbon 5. Carbon –– drought drought –– disturbance feedbacksdisturbance feedbacks

Lower       Lower
rainfall      soil water

Higher       Drier air
air temps

GPP reduced, R small reduction
NEE reduced by over 50%

Reduced C-sink strength

Drought

Insect attack

Disturbance

Stress

Reduced leaf area
and biomass increment

Positive C – climate feedbacks



5. Implications for vulnerability of C sinks5. Implications for vulnerability of C sinks

• Tree damage and mortality
– long-term consequences for forest structure

• Confounding stress factors
– greater susceptibility to insect attack

• Reduced carbohydrate storage in trees
– reduced resilience to disturbance

• Increased litterfall due to insect damage
– changes in soil organic matter decomposition

• Changes in soil C pools:
– loss of labile or recalcitrant components?
– C – nutrient interactions?

• Moisture / temperature interaction driving soil respiration
– how will this change with climate?

• Inter-annual variability in forest C exchange
– increase with climate variability



Process experiments

Linking across scales

Real-time monitoring

Long-term ecological sites

Ecosystem approach

Understanding processes Understanding processes ⇒⇒ predicting changepredicting change

Interaction of climate, disturbance
and land management



Ecosystem Carbon BalanceEcosystem Carbon Balance
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Vulnerability of terrestrial carbon sinksVulnerability of terrestrial carbon sinks

Atmospheric CO2

Warming

Fossil Fuel burning
(+)

CO2 emissions
(+)

(+)
Vulnerability of 

biospheric C pools

(+)

(+)

Vulnerability:

The risk of 
accelerated carbon 
release from a pool 
as climate change 
occurs because of a 
positive feedback

Source: Field and Raupach, 2004


