Effect of drought and disturbance on the carbon budget of a temperate forest

Helen Cleugh and Heather Keith CSIRO, Australia

Eva van Gorsel, Ray Leuning and John Raison

Are forest carbon sinks vulnerable ?

- Temperate forests are an important carbon pool and carbon sink
- What will be the effect of changing climate and climate variability?
 - Carbon gains/losses are affected by climate and climate-induced disturbances e.g. fire, insects
 - Positive feedbacks between climate and net carbon emissions
 - Feedbacks between carbon and water cycles
 - Crossing thresholds

1. Tumbarumba Flux Tower site

- 2. Climate and Drought
- 3. Response of Carbon Cycle
- 4. Forest Growth Dynamics
- **5. Implications and Concluding Comments**

1. Tumbarumba Flux Tower

In Bago State Forest, NSW

- Annual precipitation is ~ 1000 mm
- Elevation: 1200 m
- 40 m tall, broad-leaf, evergreen forest: *Eucalyptus delegatensis, E. dalrympleana*
- LAI: trees ~ 1.4; total ~ 3

Measurements:

- Radiation fluxes and meteorology
- Turbulent CO₂, water, heat, momentum fluxes
- CO₂, temperature and wind profiles
- Terrestrial C-budget:
 - Pools: soil, litter, canopy, roots, biomass
 - Fluxes: respiration, litterfall

2. Climate and Drought Rainfall distribution and deficits

Long-term (65 y) rainfall distribution:

2002 – 2003 rainfall in the lowest 5th percentile

2000 - 2006 spans $5^{th} - 70^{th}$ percentiles

Departure of annual rainfall from long-term mean shows that much of the last decade has been in a dry phase

2. Climate and drought Rainfall and soil moisture

2. Climate and Drought Evaporation

Potential evaporation combines all meteorological drivers (radiation, temperature, humidity deficit)

Difference between actual and potential evaporation illustrates combined effects of meteorology and soil water deficit

7 km x 7 km cutout surrounding flux tower

3. NEE from flux tower

C source for periods during drought and disturbance

3. Components of NEE

NEE can be calculated as:

- 1. Eddy flux:-Fc
- **2.** Difference between fluxes: $GPP (R_a + R_h)$
- **3.** Change in pools: $\Delta B + \Delta S + \Delta L$

Aim is to link ground and tower measurements to estimate NEE

GPP and Respiration

t C ha⁻¹ month⁻¹

C gain GPP

derived from eddy flux

C loss Respiration

derived from chambers

Respiration rates

Soil respiration rates: temperature and moisture interactions

Annual increment in biomass carbon

Seasonal patterns of growth

Disturbance by insect damage

Change in LAI: 2006 - 2002

4. Forest Growth Dynamics

- **Current productivity:**
 - Increment of live trees
 - Mortality
 - Consequences for annual variability
 - in C sinks
- Future productivity:
 - Stand structure
 - Recruitment
 - Consequences for continuity of timber
 - production and trends in C sinks

Drought years 2002 - 2004

Forest growth dynamics: Mortality

Higher mortality during drought in most age classes, not just self-thinning of young stands.

5. Carbon – drought – disturbance feedbacks

5. Implications for vulnerability of C sinks

- Tree damage and mortality
 - long-term consequences for forest structure
- Confounding stress factors
 - greater susceptibility to insect attack
- Reduced carbohydrate storage in trees
 reduced resilience to disturbance
- Increased litterfall due to insect damage
 changes in soil organic matter decomposition
- Changes in **soil C pools**:
 - loss of labile or recalcitrant components?
 - C nutrient interactions?
- Moisture / temperature interaction driving soil respiration

 how will this change with climate?
- Inter-annual variability in forest C exchange

 increase with climate variability

Ecosystem Carbon Balance

t C ha⁻¹ yr⁻¹

	2001-02	2002-03	2003-04
GPP (Maestra, eddy flux)	-20.9 -29.6	-19.6	-18.2
Respiration (chamber)	14.2	13.3	13.4
Biomass Increment (tree measurements)	4.5	2.3	1.0
NEE (difference, eddy flux)	-6.7 -9.0	0.8	-1.0
Δ C unknown (NEE - biomass inc.)	-2.2 -4.5	3.1	0

Year	NEE	
July – June	t C ha⁻¹ y⁻¹	
2001 - 2002	-9.2	
2002 - 2003	-0.18	
2003 - 2004	-0.84	
2004 - 2005	-4.38	

Vulnerability of terrestrial carbon sinks

Vulnerability:

The risk of accelerated carbon release from a pool as climate change occurs because of a positive feedback

