Vulnerabilities and Thresholds in the Carbon-Climate-Human System

Mike Raupach, Pep Canadell

Global Carbon Project, Earth System Science Partnership CSIRO Earth Observation Centre

Mini-Conference on Vulnerabilities in the Carbon-Climate-Human System Paris, 15 June 2005

Science Partnership

Aspiration of this talk

- Survey vulnerabilities in climate-carbon and carbon-climate-human system
- Seek common patterns
- Seek consistent measures of vulnerability
- Seek a Complex Adaptive System (CAS) perspective on vulnerability

Outline

- Defining vulnerability
 - Vulnerability and climate
 - Vulnerability and the carbon cycle
 - Vulnerability and humans
 - Synthesis

Climate

 "Human impacts on the environment are now large enough that the climate system itself is vulnerable to human interference"

Carbon

 "Land and ocean carbon pools are vulnerable to increased CO₂ release as the climate warms, thus accelerating the warming"

Humans

"Poor nations are the most vulnerable to climate change"

• Definition (Turner et al. 2003)

"Vulnerability is the degree to which a system, subsystem, or system component is likely to experience harm due to exposure to a hazard, either a perturbation or stress/stressor."

- Thus we need to:
 - 1. Identify the system or system component
 - 2. Identify the forcing (hazard) and response (harm)
 - 3. Define a measure of "degree to which system is likely to experience harm"
 - 4. Apply this measure, act on result

Carbon-climate-human interactions

Vulnerability and Climate

Outline

- Defining vulnerability
- Vulnerability and climate
- Vulnerability and the carbon cycle
- Vulnerability and humans
- Synthesis

Climate thresholds

Ice-age temperature records:

- Vostok oscillations
 - Period around 100 ky
- Dansgaard-Oescher (DO) oscillations
 - Variable period, typically a few ky

Simplified climate model for DO oscillations (Rial 2005)

Ice-core temperatures in Greenland

The Milenkovich cycles

Thresholds in the climate system

- Astable oscillator
 - Mechanism for generating a sawtooth waveform
 - No external forcing required to trigger threhold event

Thresholds in the climate system

- Frequency modulation of astable oscillator
 - External (Milenkovich) forcing changes the frequency of threhold events

Time (arbitrary units)

The Saltzmann nonlinear thermal oscillator

Self-sustained relaxation oscillation of the Saltzmann nonlinear thermal oscillator

Simplified climate model for DO oscillations (Rial 2005)

Vulnerability and climate

- The planetary climate of Earth is dynamic: abrupt changes are the norm
- Changes typically have a threshold-like character (fast warming, slow cooling)
- Thresholds are driven by a combination of self-organisation and external forcing
 - Self-organisation (endogenous drivers)
 - Ice, oceans, CO2, dust, plants
 - Vulcanism-carbonate cycle
 - Continental drift
 - External forcing (exogenous drivers)
 - Orbital forcing
 - Meteorites
- ------
- Climate thresholds imply **vulnerabilities** for ecosystems and the biosphere
- Within a wide envelope of change, the Earth System is remarkably **resilient**

Vulnerability and the carbon cycle

Outline

- Defining vulnerability
- Vulnerability and climate
- Vulnerability and the carbon cycle
 - Vulnerability and humans
 - Synthesis

The current carbon cycle (Sabine et al 2004)

Field CB, Raupach MR (eds.) (2004) The Global Carbon Cycle: Integrating Humans, Climate and the Natural World. Island Press, Washington D.C. 526 pp.

Vulnerability of terrestrial biogenic carbon

Pre-human Current perturbations Future perturbations

The current carbon cycle: detail for land (Sabine et al 2004)

Field CB, Raupach MR (eds.) (2004) The Global Carbon Cycle: Integrating Humans, Climate and the Natural World. Island Press, Washington D.C. 526 pp.

Vulnerable land and ocean carbon pools, 2000-2100

Gruber et al. (2004, SCOPE-GCP)

Drought and warming => loss of vegetation C

- Australian continent: AVHRR-NDVI anomaly 1981-2003
- Current version (Oct 2003) uses EOC "B-PAL" archive of AVHRR data
- 5 km, 8-11 day composites
- Still to incorporate:
 - Atmos correction
 - BRDF correction
 - 1-km data

Drought and warming => loss of vegetation C

AVHRR-NDVI anomaly 1998-2003 (part of a series 1981-present)
Peter Briggs, Edward King, Jenny Lovell, Susan Campbell, Michael Raupach

Vulnerability of fossil carbon pools

Pre-human Current perturbations Future perturbations

The current carbon cycle: detail for land (Sabine et al 2004)

Field CB, Raupach MR (eds.) (2004) The Global Carbon Cycle: Integrating Humans, Climate and the Natural World. Island Press, Washington D.C. 526 pp.

Trends in national carbon emissions (1950 to 2000)

Vulnerability and human systems

Outline

- Defining vulnerability
- Vulnerability and climate
- Vulnerability and the carbon cycle

- Vulnerability and humans
- Synthesis

Food

 Food supplies in less developed countries are more badly affected by climate change than those in developed countries

IPCC 1995

Source: Climate change 1995, Impacts, adaptations and miligation of climate change: scientific-technical analyses, contribution of working group 2 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.

Water

- Effects of climate change on water supply are variable, but tend to be more severe in less developed countries (Africa, Central America) than in developed countries
- Population changes will amplify this imbalance

Relative Change in Demand per Discharge

Vörösmarty et al 2000, Science

Vulnerability of networks: individuals matter Influence network for development of Montreal Protocol

Canan & Reichman 2002, Ozone Connections: Expert Networks in Global Environmental Governance

Synthesis

Outline

- Defining vulnerability
- Vulnerability and climate
- Vulnerability and the carbon cycle
- Vulnerability and humans

Quantifying and coping with vulnerability

- Quantifying vulnerability
 - Vulnerability = [Cost of harm] x Prob(harm)
 - = [Cost of harm] x Prob(harm, given hazard) x Prob(hazard)
- Coping with vulnerability: reduce vulnerability by
 - Reducing probability of harm, by reducing the stress (mitigation)
 - Reducing cost of harm, by reducing the impact (adaptation)
- The problem of transferred harm:
 - Spatial transfer: In climate change, the main generators of stress are not the same people as those experiencing most of the harm
 - Temporal transfer: There is a time delay between the stress and the harm
 - Evention => Low incentives for mitigation

Complex Adaptive Systems: vulnerability and resilience

- Attributes defining a Complex Adaptive System (CAS)
 - Hierarchy: system consists of components interacting by (fairly) simple rules
 - Self-organisation: internally generated, not externally imposed
 - Evolutionary emergence: organised system behaviour evolves in time, allowing complexity (information content) to increase
 - Adaptive capacity: system has the capability to survive
 - its own autonomous cycles and thresholds,
 - changes in external conditions

• An evolving CAS is both resilient and vulnerable

- Dynamics inducing vulnerability in a CAS:
 - thresholds, regime shifts, bifurcations, limit cycles, chaos
- These system-wide phenomena can lead to:
 - system collapse (without or with recovery)
 - collapse of a component (without or with recovery)

Human-biosphere interaction as a dynamical system A two-equation model

State variables:

B(t) = biomassH(t) = human population

Model for extraction of biomass by humans:

$$E = cBH$$

- more humans extract more biospheric resource
- each human extracts more as *B* increases (*B* is surrogate for quality of life)

Human-biosphere interaction as a dynamical system Trajectories on a (*B*,*H*) plane with random climate variability in production

Random primary production: log-Markovian, sd = 0.5, varying time scale

Human-biosphere interaction as a dynamical system Trajectories on a (*B,H*) plane for 6 scenarios

