

## Oceanic sources and sinks for atmospheric CO<sub>2</sub> *The Ocean Inversion Contribution*

## <u>Nicolas Gruber<sup>1</sup></u>, Sara Mikaloff Fletcher<sup>2</sup>, and Kay Steinkamp<sup>1</sup>

<sup>1</sup> Environmental Physics, ETH Zürich, Zurich, Switzerland.
<sup>2</sup> NIWA, Wellington, New Zealand.

### Air-sea CO<sub>2</sub> fluxes from the ocean inversion (2000)



#### ANTHROPOGENIC FLUXES (mol m<sup>-2</sup> yr<sup>-1</sup>)



#### NATURAL (PI) FLUXES (mol m<sup>-2</sup> yr<sup>1</sup>)



### Air-sea CO<sub>2</sub> fluxes from the ocean inversion



Global uptake of anthropogenic CO<sub>2</sub>: 2.2 Pg C yr<sup>-1</sup>

#### The importance of lateral transport



#### The importance of lateral transport



#### How were these air-sea fluxes estimated?



Using classical Green's function inverse methods, one can infer the surface sources and sinks of anthropogenic and natural CO<sub>2</sub> from their ocean interior distribution.

#### Uncertainty estimate provided by range of model results



Estimates come with formal uncertainty estimates, mostly stemming from the spread of ocean models

#### Air-sea fluxes (and transports) from ocean inversion

| STRENGTHS                                                                                                                 | LIMITS                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Independent data-based estimate<br>(independent of pCO <sub>2</sub> data and gas-exchange<br>coefficient)                 | Only annual mean fluxes<br>(no monthly estimates )                       |  |
| Formal uncertainty estimates<br>(including co-variances and estimates for<br>individual models)                           | Error stems from a combination of data and ocean transport uncertainties |  |
| Attribution to natural and<br>anthropogenic fluxes<br>(for 1995, 2000, 2005)                                              |                                                                          |  |
| Permits to estimate fluxes, storage, and<br>lateral transport<br>(for natural, anthropogenic, and contemporary<br>carbon) |                                                                          |  |

#### Access to the data

PATH

http://lgmacweb.env.uea.ac.uk/lequere/recc

go to ETH folder

CONTENT

readme\_eth.txt

fluxes\_covariances\_OIP\_1995-2000-2005.mat

gridded\_results\_OIP\_1995-2000-2005.nc

| 1:360 | 1:180                                                                                                                               | 1:10                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1:360 | 1:180                                                                                                                               | 1:10                                                                                                                                                                                                                                                                                                                                                                                  | 1:3                                                  |
| 1:360 | 1:180                                                                                                                               | 1:10                                                                                                                                                                                                                                                                                                                                                                                  | 1:3                                                  |
| 1:360 | 1:180                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                   | * * *                                                |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   | * * *                                                |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
| 1:360 | 1:180                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   | * * *                                                |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 1:360 | 1:180                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                   | * * *                                                |
|       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 1:360 | 1:180                                                                                                                               | ***                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 1:360 | 1:180                                                                                                                               | 1:3                                                                                                                                                                                                                                                                                                                                                                                   | * * *                                                |
|       | 1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360<br>1:360 | 1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180     1:360   1:180 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

#### **ADD-ON: Joint-atmosphere-ocean inversion**



Substantial shift in mean flux for tropical and southern land regions

# The End.

### **Convergence of air-sea CO<sub>2</sub> flux estimates**



A remarkable agreement is found, with the exception of the regions south of 44°S.

#### Comparison of ocean inverse estimates with Takahashi climatologies



With the exception of the Southern Ocean, each subsequent edition of the Takahashi et al. climatology became more consistent with the results of the ocean inversion.

### **Comparison of ocean inverse estimates with TransCOM**



Moving from L1 to L3, TransCOMs estimates became more consistent with those from the ocean inversion

#### **Ocean Inversion Method**



Mikaloff Fletcher et al. (2006, 2007)

### Inversion of ocean interior observations using a Green's function approach



- Basis functions are model simulated footprints of unit emissions from a number of fixed regions
- Estimate *linear combination* of basis functions that fits observations in a least squares sense.
- → Inversion is analogous to *linear regression*

estimated fluxes