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Background

Autumn warming since 1960-80 NASA/GISS

How does the Carbon
Uptake Period respond to
rising temperature?

As temperature is rising,
the length of the growing
season usually increases
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Methods used In this study
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Atmospheric CO, long term records
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Trends In spring and autumn crossing dates
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Both an earlier draw down in spring and earlier build up of CO, in autumn
But the autumn trend Is stronger than in spring

-> the carbon uptake period shortens |
Piao et al. 2007, Nature



Anomaly of DD date
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Temperature vs. carbon uptake period at BRW
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Atmospheric transport analyses

e Perform three simulations:
S1: only wind was varied (using mean flux from terrestrial and ocean)

S2: wind and flux from terrestrial were varied.

S3: wind, flux from terrestrial and ocean were varied
The effects of terrestrial ecosystem on atmospheric CO, = S2 - S1

The effects of ocean on atmospheric CO, = S3 - S2

e Models used in this study (1980-2002)

ORCHIDEE: simulate C flux from terrestrial ecosystems
PISCES: simulate C flux from ocean
LMDZs: transport model



Anomaly of zero-crossing date
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A model of atmospheric
transport was
prescribed with every-year-
the-same or with variable
Land atmosphere fluxes

The difference in simulated
CO2 between the two runs
IS the contribution of fluxes,
the rest is the contribution of
varying winds

Piao et al. 2007, Nature



Ecosystem flux measurements

e Datasets

-Analyze the net CO, flux data measured by
eddy-covariance technique from 24 different
northern ecosystem sites

e Methods

- The end of the Carbon Uptake Period is
defined as the last day in a year when the
NEP 5-day running means exceeds zero.

- Autumn is defined as the interval of £30
days around the average CUP ending date at
each site.




Temperature vs. carbon uptake period
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Global ecosystem model ORCHIDEE
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Temperature vs. gross C Fluxes in NH (>25°N)
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C flux sensitivities to

temperature (gC/m2/yr)
NANMNN

photosynthesis respiration carbon balance

Spring: Warm temperatures accelerate growth more than soil decomposition. The

annual relationship of NEP to temperature is positive
=> Warming enhances carbon uptake

Autumn: Warm autumn accelerate growth less than soil decomposition. The

annual relationship of flux to temperature is negative.

=> Warming reduces carbon uptake
Piao et al. 2007, Nature



Autumn (SON) temperature vs. C Flux

{a) GPP sensitivity {b) NPP sensitivity

e Warmer autumns coincide with
greater than normal GPP

e Due to a concurrent stimulation of
plant respiration, the geographical
area where autumn NPP increases
with temperature is much less
extensive than the area where GPP
Increases

e The ‘extra’ fall NPP is being
accompanied by even more modeled
respiration in response to warming,
so that the NEP response shows
systematic  anomalous  carbon
losses during warmer autumns

Piao et al. 2007, Nature



Why do we need to know the mechanisms?
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Spatial patterns of C sink and greening trend
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Greening trend in
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America
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Why?
C sink of Eurasia > North America

Greening trend in Eurasia > North America



Spatial patterns of current temperature change

The warming trend
IS more
pronounced in
spring over
Eurasia

The warming trend
IS more
pronounced in
autumn over North
America
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Conclusions (i)

Observations =

Evidence from atmospheric CO2 long-term data for a shorter Carbon Uptake Period
Paradoxial observation with high latitude greening

Hypothesis =

Warming in Autumn increases respiration more than photosynthesis

Analysis =
Simulation of CO2 data using transport model shows that the atmospheric signal is
caused by fluxes, not transport

Eddy flux towers show positive correlation between carbon losses and warmin in
Autumn

ORCHIDEE model simulations confirm that longer green seasons in warmer
autumns coincides with carbon losses



Conclusions (i)

 Possible explanation for a greater Eurasia than North
American sink (warming trend in Autumn is larger in North

Amerca)

* A positive feedback of climate warming in the future
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