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1 Overview 

1.1 Objective 

The aim of the OptIC project is to comparatively evaluate several parameter estimation and data 
assimilation methods for the task of determining parameters in biogeochemical models from 
multiple sources of noisy data. Particular foci are (1) ability to handle data inadequacies such as 
noise, correlations and gaps; (2) ways to optimise the model-data synthesis process in the absence 
of good error specifications for the data; and (3) ways to handle multiple data sources with quite 
different properties.  

The intention of OptIC is to focus specifically on the intercomparison of model-data synthesis 
methods, rather than biogeochemical models or data sources. This is the reason for the use of a 
transparently simple test model which embodies only the essential features of a real 
biogeochemical model, and artificially generated data for which "true" parameters are known. 

The anticipated outcomes of OptIC are 

• Better understanding of the strengths and limitations of a variety of model-data synthesis 
methods, especially with regard to handling noisy and incomplete data;  

• Iterative improvement of methods by systematically tackling a sequence of progressively 
more challenging problems in terms of data inadequacies; 

• Hence, design of parameter estimation and data assimilation methods for realistic 
assimilation of multiple data streams into biogeochemical models, to observe and predict 
the terrestrial balances (fluxes, storage changes) of carbon, water and related entities. 

1.2 Approach 

The method is to estimate parameters in a highly-simplified test model, using artificially 
generated data (from a forward run of the model) to which several forms of data degradation are 
added.  The test model is a highly simplified two-equation representation of the carbon dynamics 
in a terrestrial biosphere model, with two state variables corresponding roughly to biomass 
carbon and soil carbon.  The artificially generated data are surrogates for remote sensing data on 



biomass (such as NDVI-based estimates of green leaf area index) and in-situ store measurements 
(such as soil carbon). Possible forms of data degradation added to the artificially generated test 
data include noise with Gaussian or skewed distributions, correlation among different data 
streams, temporal correlations, drifts, extreme outliers, and gaps in one or more data streams. 

The test model (but not the parameter values) and degraded data sets are made available to 
investigators and teams wishing to test particular methods. The investigators return their results 
for estimated parameters and other metrics (including parameter uncertainties and model forecast 
capability with the estimated parameters) to a central archive where objective evaluations of the 
success of the estimations are made. 

To date, methods for inclusion in the intercomparison are:  (1) down-gradient search by the 
Levenberg-Marquardt method;  (2) down-gradient search using a model adjoint to find the 
gradient; (3) the Extended Kalman Filter (EKF);  (4) the Ensemble Kalman Filter (EnKF);  (5) 
the Metropolis-Hastings method;  (6) a Genetic Algorithm. 

2 Background 

2.1 Context and Related Work 

The roles of terrestrial and oceanic biogeochemical processes in the climate system and the earth 
system are now well recognised (Steffen et al. 2004; Field and Raupach 2004).  There is a 
corresponding recognition of the need to include these processes in climate and earth system 
models, especially for long-term (multiannual and greater) simulations.  

Data assimilation into models has been under intensive development in meteorological and ocean 
forecasting since the 1980s, and has led to major improvements in forecast ability.  Increasingly, 
data assimilation and parameter estimation methods (collectively termed model-data synthesis) 
are being used to constrain models of biogeochemical cycles (both in stand-alone form and as 
components of climate system models) with multiple sources of data (Raupach et al. 2005).  The 
application of these approaches into biogeochemical modelling has accelerated very quickly since 
about 2000, with the active support of several international initiatives.  These include: 

• The Global Carbon Project (GCP), a joint project of IGBP, IHDP, WCRP and Diversitas (the 
Earth System Science Partnership, ESS-P).  The Global Carbon Project has identified model-
data synthesis as a primary tool for resolving patterns and trends in the carbon cycle at global 
and regional scales. The OPTimisation InterComparison (OptIC) is a contribution to Activity 
1.2 on "Model Development and Model-Data Fusion" of the GCP Implementation Strategy 
(Global Carbon Project 2003, available at 
http://www.globalcarbonproject.org/science_plan_and_implementation.htm) 

• The Integrated Global Carbon Observation (IGCO) Theme 
(http://ioc.unesco.org/igospartners/carbon.htm) of the Integrated Global Observation Strategy 
Partnership (IGOS-P) (http://ioc.unesco.org/igospartners).  The overall objective of the IGCO 
Theme is to develop a flexible and robust strategy for international global carbon 
observations over the next decade, combining remote and in-situ observations and bringing 
together observational strategies for land, oceans and atmosphere. 



• The North American (NLDAS) and Global (GLDAS) Land Data Assimilation Systems 
(http://ldas.gsfc.nasa.gov), which are being developed mainly from a hydrological perspective 
to improve reanalysis and forecast simulations by numerical weather prediction (NWP) 
models, particularly for soil moisture stores and land-air energy fluxes. 

2.2 Major Questions 

A wide variety of methods is available for model-data synthesis in biogeochemical modelling, 
including many forms of down-gradient searching (sometimes using adjoint models for 
determining gradients); global search methods including genetic-algorithm, simulated-annealing 
and related approaches; and several forms of the Kalman filter.  Raupach et al. (2005) survey 
these methods from the standpoint of terrestrial biogeochemical modelling, with particular 
emphasis on their requirements for uncertainty specification in the data.  Despite this plethora of 
possible methods and activity, biogeochemical model-data synthesis remains a young science. 
Major questions include the following: 

1. What methods are appropriate for particular problems?  This must account for the 
complexity of the model (number of state variables); the characteristics of the data (number and 
uncertainty properties of the measurements; extent of prior knowledge on parameters); and 
whether data are available all at once (as in most parameter estimation problems) or sequentially 
(as in data assimilation problems for constraining forecast models).  

2. How do model-data synthesis methods respond to inadequacies in the data?  Inadequacies 
that characterise most real data include noise, correlations, gaps and outliers.  

3. How can particular methods be tuned for best performance in biogeochemical model-data 
synthesis?  This involves (typically) adjustment of information about model error and data error 
so that each exerts an appropriate influence on the final result. Tuning may be a priori or 
adaptive during the model-data synthesis process. 

4. How can model-data synthesis be carried out effectively using multiple data sources with 
very different spatial and temporal densities and error characteristics?  "Multiple constraints" 
refers to the simultaneous use of multiple kinds of observations (for example, atmospheric 
composition measurements, remote sensing, eddy-covariance fluxes, vegetation and soil stores, 
and hydrological data) in model-data synthesis. Issues requiring resolution include the need to 
handle data sources with quite different spatial and temporal scales of measurement, very 
different sample numbers and different error properties.  

5. How can parameter estimation be done in large spatial domains with high spatial 
heterogeneity and few on-ground measurement points?  This includes the issue of undersampling 
spatially variable parameters, and that of making spatially distributed parameter estimation 
computationally efficient over large domains. 

Questions such as these suggest the need for methodological development in model-data 
synthesis for terrestrial biogeochemical applications. The Optimisation Intercomparison (OptIC) 
project is intended to contribute to this development. 



3 Test Model 

3.1 Formulation 

The test model is a highly simplified representation of the carbon dynamics in a terrestrial 
biosphere model (TBM), with two state variables corresponding conceptually to stores of 
biomass carbon (x1) and litter and soil carbon (x2).  These variables are governed by the equations 
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where F(t) is a forcing term describing input into the biomass store x1 by net primary production 
(NPP), the flux of carbon into biomass by growth; p1 and p2 are scales for the limitation of 
production by lack of x1 and x2, respectively; k1 and k2 are rate constants for the decay of x1 and 
x2, respectively; and s0 is a "seed production" term for x1. 

This test model is a severe but rational simplification of a full TBM, in the following sense.  All 
biomass carbon (leaf, wood, root) is lumped into a single store x1, and all litter and soil carbon 
into a single store x2.  These are respectively governed by equations of the form dx1/dt = (NPP) − 
(litterfall) and dx2/dt = (litterfall) − (heterotrophic respiration).  The flux terms on each right hand 
side are identified in Equations (1) and (2) (except for seed production, which is discussed 
shortly).  Litterfall is parameterised as a flux k1x1 which is an outflow from x1 and an inflow to x2, 
where k1 is a rate constant.  Likewise, heterotrophic respiration is parameterised as an outflow 
flux k2x2 from the x2 pool.  NPP depends on the availability of essential resources (light, water 
and nutrients) and also on the biomass invested in organs for resource acquisition (leaves for 
light, roots for water and nutrients).  The light and water resources are together represented by a 
forcing term F(t) equal to the NPP under given light and water inputs, without limitation by 
either lack of biomass investment in resource-gathering organs or nutrient availability.  The time 
dependence in F(t) accounts for fluctuating availability of light and water through variation in 
weather and climate.  The actual NPP is less than F(t) because of lack of biomass investment in 
resource-gathering organs and lack of nutrients, described respectively by the factors x1/(p1 + x1) 
and x2/(p2 + x2) (of Michaelis-Menten form).  To account for nutrient limitation, x2 (litter and soil 
carbon) is used rather than a soil nutrient store, since these two stores tend to vary together. 

The parameter s0 is a small "seed production" term for x1.  It represents growth of biomass from 
seed, assumed (unrealistically) to be a constant growth flux independent of x1, x2 and external 
conditions.  It is included for the following reason: if s0 is absent (s0 = 0), then "extinction" of the 
test model biosphere is possible because (x1,x2) = (0,0) is a stable equilibrium solution of 
Equations (1) and (2).  As explained in the next section on the dynamical properties of the test 
model, this does not occur if s0 > 0 (and s0 is not too small). 



This test model is not intended to be an actual TBM but rather a simplified version of a TBM 
with enough of the mathematical properties of a real TBM to answer the questions posed in the 
OptIC objectives.  These properties include (a) nonlinearity, through the form of the NPP term; 
(b) multiple stores (here two); (c) data streams giving information about the stores or fluxes (such 
as NPP) but not directly about the parameters, which must be estimated. 

Throughout, the forcing term F(t) is assumed to be externally specified as a "log-Markovian" 
random process, that is, a process such that ln F(t) is Markovian with specified mean and 
standard deviation.  Specifically, we take F(t) = p0exp(m(t)), where p0 is a measure of the mean 
magnitude of F(t), and m(t) is a dimensionless Markov process with zero mean, standard 
deviation σm, and time scale Tm.  The process m(t) obeys the Langevin equation, the stochastic 
differential equation ( ) ( ) ( )2m m mdm dt m T T t= − + σ ξ , where ξ(t) is Gaussian white noise 

(Arnold 1974, Legg and Raupach 1982).  In finite-difference form, F(t) is given by: 
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where Fi and mi are sequences of F(t) and m(t) at times ti with increments ∆t, and wi is a Gaussian 
random number with zero mean and unit variance.  This formulation ensures that F(t) is always 
positive.  The quantities determining F(t) are p0, σm and Tm.  In most cases the values used are 
p0 = 1, σm = 0.5 and Tm = 10∆t, with discretisation interval ∆t = 1 time unit.  These properties of 
F(t) are given quantities, not model parameters to be estimated. 

The test model has five parameters: p1, p2, k1, k2 and s0.  Figure 1 shows the behaviour of the 
model with "reference" parameter choices p1 = 1, p2 = 1, k1 = 0.2, k2 = 0.1, s0 = 0.01, and a log-
Markovian forcing function F(t) specified as above.  
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Figure 1:  Test model behaviour with reference parameter choices p1 = 1, p2 = 1, k1 = 0.2, k2 = 0.1, s0 = 0.01.  Forcing 
function F(t) is log-Markovian with p0 = 1, σm = 0.5, Tm = 10∆t, and discretisation interval ∆t = 1 (see text). 

 



3.2 Dynamical Properties 

Despite the test model being quite simple in form, it has some subtle properties as a dynamical 
system.  Without providing details here, a brief summary of these properties is as follows. 

Steady forcing F(t):  Let us consider first the situation the forcing is steady and F(t) = p0. In this 
case the model has equilibrium points or fixed points xq = (xq1,xq2), at which dx1/dt = dx2/dt = 0.  
These points are solutions of 
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The second of Equation (4) implies that x2 = (k1/k2)x1 at equilibrium, and the first then implies 
that x1 satisfies 
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Thus the equilibrium points are of the form xq = x1(1, k1/k2), where x1 is a solution of the cubic 
equation g(x1) = 0. This equation has either one or three real roots, yielding either one or three 
equilibrium points.  The outcome is different depending on the value of the seed production s0. 

• Seed production present:  In this case, s0 > 0.  With the reference parameter choices [p1 = 1, 
p2 = 1, k1 = 0.2, k2 = 0.1, s0 = 0.01], there is just one real root of g(x1) = 0, and hence just one 
equilibrium point.  This is (xq1,xq2) = (3.428, 6.856).  It is a stable (attracting) equilibrium 
point: solutions ((x1(t), x2(t)) converge to this point as t → ∞, from any starting point. 

• Seed production absent:  In this case, s0 = 0.  With all parameters set to their reference values 
except that s0 = 0, there are three real roots of g(x1) = 0, hence three equilibrium points,  at 
(3.351, 6.702), at the origin (0,0), and at (0.149, 0.298).  The first two of these are stable and 
the third is unstable.  The reason for including a seed production term is to remove the 
(undesirable) stable point at the origin.  With this equilibrium point present it is possible for 
solutions of the test model to be attracted to it if they stray into its basin of attraction close to 
the origin, and then be trapped there forever.  Such an outcome would correspond to 
extinction of the terrestrial biosphere. 

Unsteady random forcing F(t):  Now we turn to the case where the forcing F(t) is random, as in 
Figure 1.  The model must now be solved numerically.  Figure 2 shows three model integrations 
over 10000 time steps, all with seed production present (s0 = 0.01).  The first is with reference 
parameters as in Figure 1 (this figure just extends the series from 1000 to 10000 steps). In the 
other two, k1 is increased from 0.2 (the reference value) to 0.4 and then 0.5 (with all other 



parameters left at reference values).  At the larger k1 values, the model exhibits a dual-mode 
behaviour, flipping between "active" and "dormant" states in response to vagaries in the forcing 
F(t).  It is not visually apparent what aspects of F(t) cause the flip.  This aspect of the model 
behaviour is reminiscent of the blooming of desert ecosystems in response to rain, interspersed 
with long periods of dormancy. 
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Figure 2:  Illustration of dual-mode (active, dormant) behaviour of the test model.  The three panels show numerical 
model integrations with k1 = 0.2, 0.4 and 0.5, and other parameters set to reference values.  The forcing F(t) is 
identical in each case. 

 



4 OptIC Process 

4.1 General  

The optimisation intercomparison involves the estimation of optimum or minimum-error values 
for four parameters (p1, p2, k1, k2) in the test model, using artificially generated data from a 
forward run of the model in which these parameters have been assigned "true" values unknown to 
participants.  The time series ((x1(t), x2(t)) from this forward run are treated as observations for 
the parameter estimation, but like real data, they are subjected to degradation (noise, correlations, 
drifts, gaps) before being supplied to participants.  Thus the "observations" are 
z1(t) = x1(t) + noise, and z2(t) = x2(t) + noise.  The observation series may contain missing values, 
possibly representing a large fraction of the data.   

Participants in the intercomparison know the form of the test model and receive datasets of the 
forcing, F(t), and observations z1(t) and z2(t).  The "aim of the game" is to use a parameter 
estimation method of choice to estimate (1) the "true" parameter values (p1, p2, k1, k2) used to 
generate the observations, and (2) characteristics of the degradation such as noise statistics. 

The results will be compared using a number of different metrics, to assess the ability of different 
methods to recover the model parameters under various conditions.  Uncertainty analysis will be 
an important component of the exercise.  A workshop will be held in early 2006 to compare and 
discuss the results. We expect to produce a comparison paper from the project, and participants 
may also produce associated papers on specific methods. We also expect to produce a CD with 
the model code, supplied datasets, code for some of the optimisation calculations, results and 
analysis. 

4.2 Who can participate? 

The optimisation intercomparison is open to anyone who would like to participate.  Participants 
can register their intention to submit results and their chosen method by email to Cathy Trudinger 
(cathy.trudinger@csiro.au).   

5 Details of Experiments 

5.1 General 

There will be 16 experiments in total. The first 6 experiments will be ‘training’ experiments, each 
involving the same set of parameter values, initial values and forcing time series, but with 
different types of noise. These are denoted T1 through T6. There will then be 10 experiments 
(denoted A through J), each involving a different set of parameter values, a different forcing time 
series F(t), and with different types of noise imposed on the data. It will be up to participants to 
choose values for any additional information required by their optimisation method, such as 
uncertainties in the measurements, initial parameter uncertainties or initial values for x1 and x2. 
Participants will submit their best estimates of the parameters, and, if possible, the parameter 



covariance matrix, for each experiment (A through J as well as T1 through T6). Although 
participants know that experiments T1-T6 have the same parameter values, they should treat 
them as individual experiments, as this will give us the best indication of how the different types 
of error influence the solution. The forcing time series will be specified for 12000 timesteps, but 
the noisy observations available only for the first 10000 timesteps.  We would like participants to 
calculate x1(t) and x2(t) for the full 12000 timesteps, using their best estimates of the parameters 
and the given forcing F(t) for each experiment.  This will test how differences in parameter 
estimates affect predictions of x1 and x2 when there is no data for assimilation. 

The programs (in Fortran 90) used to generate the data and noise will be available to participants 
for testing of their optimisation calculation. 

5.2 Parameter ranges 

Participants will estimate the values of four model parameters: p1, p2, k1, k2.  The value of s0 will 
be set throughout to 0.01.  The "true" parameter values will lie within known "prior" ranges 
shown in Table 1.  Participants may choose their estimates and uncertainty ranges (if required) 
based on these ranges. 

 
Parameter Minimum Value Maximum Value 

p1 0.5 5 
p2 0.5 5 
k1 0.03 0.9 
k2 0.01 0.12 
s0 fixed at 0.01 

Table 1: Prior ranges for parameters 

5.3 Types of observation noise 

Below is a list of the types of noise that may be added to the data. The noise properties of z1 and 
z2 may be different.  In the following, yi is the uncorrupted observation (in our case yi = xi), zi is 
the observation with noise added, and wi is a Gaussian random number with zero mean and unit 
variance. In most cases the noise added to the observations has zero mean. 

Not all of the following cases will be represented in the experiments. 

1. Gaussian random noise with constant standard deviation σ: 

 i i iz y w= + σ  

2. Gaussian random noise with standard deviation σyi (proportional to signal yi): 

 ( )1i i iz y w= + σ  

3. Uniformly distributed noise added to signal: 

 i i iz y u= + σ  



where ui ∈  U[−1, 1], meaning that ui is a random number drawn from a uniform distribution 
between −1 and 1. 

4. Random noise with log-normal (skewed) distribution added to signal: 

 ( ) ( )2exp exp 0.5i i iz y w= + σ − σ  

The last term is the population mean of the noise term exp(σwi), which is subtracted to give 
an unbiased (zero-mean) overall noise term. 

5. Random noise with log-normal distribution multiplied by signal: 

 ( ) ( )2exp exp 0.5 1i i i iz y w y  = σ − σ −   

The noise population mean, the last term, is subtracted to give an unbiased overall noise.  

6. Random noise with Weibull distribution added to signal 
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c
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where vi ∈  U[0, 1].  The noise population mean, the last term, is subtracted to give an 
unbiased overall noise.  The Weibull distribution has the probability density function 

])/(exp[)( 1 ccc bxxcbxf −= −− , where b is the scale parameter and c the shape parameter. 

7. Gaussian random noise with a time-invariant correlation between noise in z1 and z2 at each 
time instant:  
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where r is the correlation coefficient between noise in z1 and z2, and w1,i and w2,i are 
uncorrelated Gaussian random noise sequences with zero mean and unit variance. 

8. Noise correlated in time (Markov sequence): 
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1 with exp , 1

i i i

i i m i m

z y m

m am b w a t T b a−

= +

= + σ = −∆ = −
 

where σm is the standard deviation of the Markov sequence and Tm is its integral time scale.  
This is the time scale over which the noise is temporally correlated.  The above is similar to 
Equation (3). 

9. Gaussian random noise plus the occasional Gaussian-distributed extreme outlier: 

 ( ), ,i i n n i x i x x iz y w H p v w= + σ + − σ  



where σn is the standard deviation of the Gaussian random noise, σx (>> σn) is the standard 
deviation of the population of extreme outliers, wn,i and wx,i are uncorrelated Gaussian 
random noise sequences with zero mean and unit variance, vi is a uniform random number 
between 0 and 1 (vi ∈  U[0, 1]), H(x) is the Heaviside step function (H(x) = 0 for x < 0 and 
H(x) = 1 for x > 0), and px is the (small) probability of extreme outliers.  The last term is 
zero unless the random number vi falls below px. 

10. Gaussian random noise plus shifts of random magnitudes lasting different intervals of time 
(mimicking calibration tank changes): 
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where ζi represents the random shift part of the noise, ps is the (small) probability of a shift, 
and σx is the standard deviation of the zero-mean Gaussian distribution from which shifts 
are drawn. 

11. Gaussian random noise plus drifts of different magnitudes, resetting to zero at random 
intervals (mimicking calibration tank drifts): 
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where ζi is the drift part of the noise, pd is the (small) probability of a resetting of the drift 
to zero, and σd is the standard deviation of the zero-mean Gaussian distribution from which 
drift rate is drawn.  The drift rate k is held constant except for occasional resets. 

5.4 Data sets 

There will be 16 cases in total, with different types and magnitudes of observation noise, different 
forcing time series, different initial values for x1 and x2, and different parameters (p1, p2, k1, k2) to 
be estimated.  For each case, the following will be supplied: 

• Forcing time series F(t) for 12000 timesteps 
• Observations z1 and z2 (which include noise) for 10000 timesteps. Some cases may have some 

missing data for z2, flagged as −999. 

Initial values of x1 and x2 will not be given.  

Some observations could have negative values, depending on the type and magnitude of the 
noise, and participants can choose how to deal with this.  

 



5.5 Outputs required from parameter estimation 

For each of the 16 cases, participants are requested to provide (where possible): 

•  Estimated parameters (p1, p2, k1, k2) 
• Covariance matrix for parameters 
• x1 and x2 calculated with the estimated parameters for the full 12000 timesteps 
 

We recognise that some methods may not give estimates of the covariance matrix. 

Please also provide up to one page (in ASCII text, Microsoft Word or LaTeX) about your 
method, how you applied it to parameter estimation, any assumptions that you made and whether 
you found any of the cases particularly difficult.  

5.6 Submission of results 

To Cathy Trudinger (cathy.trudinger@csiro.au), in ASCII format, one file per case, with: 

• Parameter estimates (p1, p2, k1, k2) [formatted as in the Fortran statement write(*,'(4e16.6)') ] 
• Covariance matrix (4x4) for parameters p1, p2, k1, k2 [formatted as 4 lines of 

write(*,'(4e16.6)')] 
• Time series of t, x1(t), x2(t) for the entire length of the forcing function record, 0 ≤ t ≤ 12000 

[formatted as 12001 lines of write(*,'(i6,2e16.6)') ], with t = 0 referring to initial values.  
• If any quantity is not available (such as covariance matrix), use the special value –999.  
• The 10 files should be named like “SmithA.dat” using the name of the participant and the 

case letter (A to J or T1 to T6), and be emailed as attachments. 
 
Results are due by Friday 11 November 2005. 
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