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Abstract. We quantify the relative roles of natural and an-
thropogenic influences on the growth rate of atmospheric
CO2 and the CO2 airborne fraction, considering both in-
terdecadal trends and interannual variability. A combined
ENSO-Volcanic Index (EVI) relates most (∼75%) of the
interannual variability in CO2 growth rate to the El-Nĩno-
Southern-Oscillation (ENSO) climate mode and volcanic ac-
tivity. Analysis of several CO2 data sets with removal of
the EVI-correlated component confirms a previous finding
of a detectable increasing trend in CO2 airborne fraction (de-
fined using total anthropogenic emissions including fossil fu-
els and land use change) over the period 1959–2006, at a
proportional growth rate 0.24% y−1 with probability ∼0.9
of a positive trend. This implies that the atmospheric CO2
growth rate increased slightly faster than total anthropogenic
CO2 emissions. To assess the combined roles of the biophys-
ical and anthropogenic drivers of atmospheric CO2 growth,
the increase in the CO2 growth rate (1.9% y−1 over 1959–
2006) is expressed as the sum of the growth rates of four
global driving factors: population (contributing +1.7% y−1);
per capita income (+1.8% y−1); the total carbon intensity of
the global economy (−1.7% y−1); and airborne fraction (av-
eraging +0.2% y−1 with strong interannual variability). The
first three of these factors, the anthropogenic drivers, have
therefore dominated the last, biophysical driver as contribu-
tors to accelerating CO2 growth. Together, the recent (post-
2000) increase in growth of per capita income and decline
in the negative growth (improvement) in the carbon intensity
of the economy will drive a significant further acceleration
in the CO2 growth rate over coming decades, unless these
recent trends reverse.
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(michael.raupach@csiro.au)

1 Introduction

Atmospheric CO2 concentrations have risen over the last 200
years at an accelerating rate, in response to increasing anthro-
pogenic CO2 emissions. The resulting CO2 disequilibrium
has led to uptake of CO2 from the atmosphere by land and
ocean CO2 sinks, which currently remove over half of all an-
thropogenic emissions and thereby provide a strong negative
(stabilising) feedback on the carbon-climate system (Gruber
et al., 2004; Sabine et al., 2004). The CO2 airborne fraction
(the fraction of total emissions from fossil fuels and land use
change accumulating in the atmosphere) has averaged 0.43
since 1959, but has increased through that period at about
0.2% y−1 (Canadell et al., 2007). These interdecadal trends
in CO2 growth rate and the airborne fraction are the outcome
of a race between two groups of forcing factors: the social,
economic and technical drivers of anthropogenic emissions
(including population, wealth and the carbon intensity of the
economy), and the biophysical drivers of trends in land and
ocean sinks.

The CO2 growth rate also varies strongly at interannual
(∼1 to∼10 y) time scales, through mainly biophysical mech-
anisms. Fluctuations in CO2 growth rate correlate with the
El-Niño-Southern-Oscillation (ENSO) climate mode (Keel-
ing and Revelle, 1985; Keeling et al., 1995; Jones and Cox,
2005), because the terrestrial carbon balance in tropical re-
gions is tilted from uptake to release of CO2 during dry,
warm El-Niño events (Zeng et al., 2005; Knorr et al., 2005).
Volcanic events are also significant: the CO2 growth rate de-
creased for several years after the eruption of Mt. Pinatubo in
June 1991 (Jones et al., 2001), probably because of increased
net carbon uptake by terrestrial ecosystems due to higher
diffuse solar radiation (Gu et al., 2003) and cooler temper-
atures (Jones and Cox, 2001) caused by volcanic aerosols.
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This interannual variability in the CO2 growth rate is impor-
tant for two reasons: it indicates mechanisms that govern the
land and ocean CO2 sinks, and it masks important longer-
term trends in the CO2 growth rate with strong variability at
higher frequencies.

In this paper we investigate the combined anthropogenic
and biophysical drivers of atmospheric CO2 growth rates,
with three aims. First, we obtain a simple quantification of
the leverage of ENSO and volcanic signals on global CO2
sinks at interannual time scales, using a combined ENSO-
Volcanic Index (EVI). Second, we analyse observed inter-
decadal trends in the CO2 airborne fraction by removing the
interannual variability associated with the EVI from several
CO2 records, confirming and extending the preliminary find-
ings of Canadell et al. (2007). Third, we introduce an ex-
tended form of the Kaya identity which combines the bio-
physical and anthropogenic drivers of CO2 growth, and use
it both to diagnose the drivers of past trends and offer some
indicative estimates of future CO2 growth rates.

2 Framework

2.1 Atmospheric CO2 budget and airborne fraction

The global atmospheric CO2 budget is written as

C′
a = FE + FS

= (FFoss+ FLUC) + (FLandAir + FOceanAir)
(1)

where Ca=νa[CO2] is the mass of atmospheric CO2
(with [CO2] the atmospheric CO2 mole fraction and
νa=2.127 PgC ppm−1); C′

a=dCa/dt is the growth rate of
atmospheric CO2 (with primes denoting time derivatives);
FE is the total anthropogenic CO2 emission flux including
emissions from fossil fuels (FFoss) and net emissions from
land use change (FLUC); andFS is the total surface-air ex-
change flux including land-air and ocean-air fluxes (FLandAir
andFOceanAir). All fluxes are positive into the atmosphere,
soFS<0 in the current era and the total CO2 sink is−FS .

The CO2 airborne fraction, the fraction of emissions accu-
mulating in the atmosphere, has two extant definitions based
respectively on total anthropogenic emissions from both fos-
sil fuels and land use change (FE=FFoss+FLUC), and on
fossil-fuel emissions only (FFoss):

aE = C′
a/FE; aFoss= C′

a/FFoss (2)

where the subscript denotes the normalising flux. The former
(aE) is the “total” airborne fraction, while the latter (aFoss)
has been called the “apparent” airborne fraction (Oeschger
et al., 1980; Enting, 2007). Similarly, a sink fraction (the
fraction of emissions taken up by land and ocean sinks,
−FS) can be defined in two ways assE=−FS/FE (total) and
sFoss=−FS/FFoss(apparent). The relationships between the
respective airborne and sink fractions are

aE = 1 − sE; aFoss= 1 − sFoss+ (FLUC/FFoss) (3)

The total airborne fractionaE is preferable in principle to
the apparentaFoss, for two reasons. First,aE is the ratio of
total response of the atmospheric carbon cycle (C′

a) to to-
tal forcing (FE), whereasaFoss is the ratio of total response
(C′

a) to a partial forcing (FFoss), omittingFLUC. Second (and
in consequence), the total airborne and sink fractions add to
1, so trends inaE are always opposite to trends insE and
either fraction is a direct measure of the outcome of the com-
bined influences of total emissions and total sinks on the CO2
growth rate. The apparent airborne and sink fractions do not
have this property because the additional forcing from land
use change has to be included separately as in Eq. (3). For
both reasonsaE is used here as the primary measure of air-
borne fraction, though results are also given foraFoss.

Longstanding use of the apparent airborne fraction was
originally motivated not from basic considerations but by
the methodological problem of lack of knowledge ofFLUC.
However, the situation has now changed with improved data,
especially from satellites. Recent estimates ofFLUC have
converged on 1.5±0.5 PgC y−1 for 2000–2006, compared
with FFoss≈7.6±0.4 andC′

a≈4.1±0.1 PgC y−1 over the
same period (Canadell et al., 2007).

The sink fraction (sE=−FS/FE) can be split into a land
fraction (lE) and an ocean fraction (oE):

lE = −FLandAir/FE; oE = −FOceanAir/FE (4)

The sink fraction issE=lE+oE , and the airborne, land and
ocean fractions sum to 1:

aE + lE + oE = 1 (5)

2.2 Data

We used the following data for the period 1959 to 2006 (see
Appendix A for sources and details):

– annual global CO2 emissionsFFossandFLUC;

– monthly CO2 series with the annual cycle removed,
from atmospheric baseline stations at Mauna Loa,
Hawaii (MLO) and the South Pole (SPO), together with
two estimates of globally averaged CO2 concentration:
the first (GLA) was formed from the average of MLO
and SPO, and the second (GLB) consisted of a globally-
averaged CO2 series available from January 1980 on-
ward, augmented with MLO data for 1958–1979;

– five monthly ENSO indices: eastern (Niño3), central
(Niño3.4) and western (Niño4) equatorial Pacific sea
surface temperatures, the Southern Oscillation Index
(SOI), and the Multivariate ENSO Index (MEI);

– the monthly global Volcanic Aerosol Index (VAI);

– global population and Gross Domestic Product by Pur-
chasing Power Parity (GDP-PPP).
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Fig. 1. Monthly time series for(a) CO2 growth rateC′
a , without and with lowpass filtering (f ¡0.8 y−1); (b) the Niño3 ENSO index;(c) the

VAI; (d) terms in the atmospheric CO2 budget,C′
a=FE+FS , with lowpass filtering. The growth rateC′

a is from the GLA series (average of
MLO and SPO with annual cycle removed).

The analysis was done at a monthly time step, with slowly
varying annual data (emissions, population, GDP-PPP) in-
terpolated to monthly (details in Appendix A).

3 Interannual variability of CO 2 growth rate

3.1 Spectral structure of CO2 growth and ENSO

Figure 1a, b and c respectively show time series of the CO2
growth rateC′

a , a typical ENSO index (Nĩno3) and the VAI.
There is much more high-frequency structure inC′

a than in
the ENSO index, because point time series ofC′

a contain sig-
nificant high-frequency signal arising from incomplete mix-
ing of air transported from regions with very different CO2

sources and sinks at the earth surface. In contrast, ENSO
indices based on large-area-average ocean temperatures are
temporally smoother because of the longer inherent time
scales of changes in ocean surface temperatures.

This observation is quantified in Fig. 2, by plotting nor-
malised cumulative spectra and cospectra of the CO2 growth
rate and each of the five ENSO indices (Niño3, Nĩno3.4,
Niño4, SOI, and MEI). Normalised (co)spectra show the
fractional contribution to the (co)variance from frequencies
less than a given frequency (see Appendix B for details). The
spectra (Fig. 2a) reveal much more high-frequency content in
C′

a than the ENSO indices, consistent with the above qualita-
tive observation. More significantly, theC′

a-ENSO cospectra
(Fig. 2b) show that all of the covariance betweenC′

a and any
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Fig. 2. (Left) normalised cumulative spectra ofC′
a (black) and ENSO indices (coloured), showing the total fraction of the variance contributed

by frequencies less thanf . (Right) normalised cumulative cospectra ofC′
a with ENSO indices. Colour code for ENSO indices: SOI (red),

Niño3 (orange), Nĩno3.4 (green), Nĩno4 (blue), MEI (pink). These results use the GLA (average of MLO and SPO) series for CO2 growth
rate; equivalent results with MLO and SPO series separately are very similar.

of the five ENSO indices is spectrally band-limited to fre-
quencies in a narrow window between∼0.2 and∼0.8 y−1

(periods from∼5 to ∼1.25 y). Spectral components ofC′
a

and ENSO indices at higher frequencies are uncorrelated and
add nothing to the covariance, their only effect being to de-
grade the correlation by adding high-frequency noise. It is
therefore useful to filter out the high-frequency noise for di-
agnosis of the relationship between ENSO and carbon fluxes.
Henceforth all time series are lowpass-filtered with a Fourier-
transform filter which removes frequenciesf >0.8 y−1 or pe-
riods<15 months (Appendix B).

Figure 1d shows the terms in the lowpass-filtered atmo-
spheric CO2 budget,C′

a=FE+FS . Lowpass filtering has
negligible effect onFE because it is slowly-varying relative
to C′

a . Consequently, theC′
a spectra andC′

a-ENSO cospec-
tra (Fig. 2) are practically indistinguishable from equivalent
spectra and cospectra (not shown) constructed withFS .

3.2 Correlations between surface-air exchange flux, ENSO
and volcanic activity

The mechanistic links between ENSO, volcanic activity and
the CO2 budget occur through the total (land plus ocean)
surface-air exchange fluxFS=C′

a−FE , rather than through
C′

a . Therefore we examine lagged correlations betweenFS

(rather thanC′
a) and ENSO and volcanic indices. The lagged

correlation between time seriesX(t) andY (t) is

Corr[X,Y ](τ ) = 〈X(t)Y (t + τ)〉/(σXσY ) (6)

whereτ is the time lag, angle brackets denote an average
over timet , andσX andσY are the standard deviations ofX

andY .
Lagged correlations between the five ENSO indices and

FS (Fig. 3, left) confirm the well-known relationship (Keel-
ing and Revelle, 1985; Keeling et al., 1995; Jones and Cox,

2005) between ENSO and CO2 growth rate. Peak correla-
tions between ENSO andFS (usingC′

a at MLO) depend on
the choice of ENSO index, ranging between 0.62 for Niño3
and 0.45 for Nĩno4. The peak correlation is positive (so pos-
itive ENSO index anomalies, corresponding with dry, warm
El-Niño events, are associated with positive anomalies inFS

or negative anomalies in the total sink−FS). The peak oc-
curs whenFS lags the ENSO index by 3±1 months.

To include the influences of both ENSO and volcanic ac-
tivity on CO2 fluxes and growth rate, we define an ENSO-
Volcanic Index (EVI) as the linear combination

EVI (t) = ENSOI(t−τ) + λVAI (t) (7)

where ENSOI is an ENSO index normalised to zero mean
and unit variance; VAI is the global Volcanic Aerosol In-
dex, a measure of volcanically-induced aerosol optical depth
(Ammann et al., 2003);λ is the weight for VAI relative to
ENSOI; andτ is the ENSO lag time, a measure of the time
for ENSO to affect the CO2 exchange fluxFS . It is assumed
that the VAI affectsFS without time lag. Five alternative
versions of the EVI are obtained, corresponding to the five
ENSO indices. The EVI depends on two parameters,λ and
τ , both of which are well constrained. From Fig. 3 (left) we
usedτ=3 months for all ENSO indices, so that the maximum
correlation between EVI andFS occurs neart=0. The weight
λ was chosen so that the EVI explains as much as possible
of FS , which occurs whenλ takes the value maximising the
correlation between EVI andFS . For all five EVI this is close
to λ=−16, the value used hereafter.

Use of the EVI in place of an ENSO index increases the
peak correlations withFS substantially (Fig. 3, right). With
FS calculated fromC′

a at MLO and an EVI defined from
Niño3, the peak correlation is 0.75. Figure 4 compares peak
correlations between the ENSO indices andFS , and between
the corresponding EVI andFS , usingC′

a at both MLO and

Biogeosciences, 5, 1601–1613, 2008 www.biogeosciences.net/5/1601/2008/
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Fig. 3. Lagged cross-correlation functions between (left) ENSO indices andFS , Corr[ENSOI,FS ](τ ), and (right) corresponding ENSO-
Volcanic Indices (EVI) andFS , Corr[EVI,FS ](τ ). The surface-air exchange fluxFS=C′

a−FE was calculated usingC′
a from the GLA series

(average of MLO and SPO with annual cycle removed). All series are lowpass-filtered (f ¡0.8 y−1). Colour code for different ENSO indices
and corresponding EVI matches Fig. 2.

SPO. Correlations are slightly lower at SPO than MLO, but
are still increased by using the EVI rather than correspond-
ing ENSO index. Sinceλ is negative, a positive anomaly
in the VAI component of the EVI is associated with a pos-
itive anomaly in the sink−FS (while a positive anomaly in
the ENSO component is associated with negative anomaly in
−FS as noted above).

4 Interdecadal trends in CO2 airborne fraction

4.1 Initial trend estimate

The total airborne fraction (aE=C′
a/FE=1+FS/FE) pro-

vides a measure of the relationship between total CO2 emis-
sions and sinks. We estimated trends in monthly series ofaE

inferred fromC′
a records from 1959 to 2006. SinceaE is in-

herently globally aggregated, it is necessary to use estimates
of a globally-averagedC′

a . Two estimates were used (see
Sect. 2 and Appendix A): from the average of the MLO and
SPO CO2 series with annual cycle removed (denoted GLA),
and from a globally-averaged CO2 series available from 1980
onward, augmented with MLO data before 1980 (denoted
GLB).

The trend inaE was estimated using a stochastic method
which accounts for temporal correlation in the time series
(see Appendix C for details). The trend is expressed here as
a proportional growth rate, defined for a time seriesX(t) as
r(X)=X′/X, with units % y−1.

The GLA series for 1959–2006 yielded a meanaE of 0.43
and a proportional growth rater(aE)=0.24%y−1 (with 5%
and 95% confidence limits−0.18 and 0.64% y−1 and proba-
bility P=0.81 of a positive trend). The result from the GLB
series was nearly identical. This result does not provide an
unambiguous, statistically robust determination of the trend
in aE .
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4.2 Noise reduction

Detection of trends inaE can be improved in statistical sig-
nificance by removing the interannually varying component
which is causally linked with ENSO and volcanic activity,
using the EVI.

We write an arbitrary time seriesX(t) as the sum of trend
(XT ), mean-annual-cycle (XC) and anomaly (XA) compo-
nents: X=XT

+XC
+XA. The anomaly component is fur-

ther split asXA
=XE

+XU , whereXU is a noise component
uncorrelated with the EVI andXE is linearly dependent on
the EVI. This component isXE(t)=µEVIA(t), whereµ is
the sensitivity ofX to the EVI, and use of the anomaly com-
ponent EVIA ensures thatXE(t) has zero mean, no trend and
no annual cycle. The full decomposition is thus

X = XT
+ XC

+ µEVIA + XU (8)
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WhenX is a time series overN monthly time pointstn
(n=1,. . . ,N ), the components are given by:

XT (tn) = P(tn)

XF (tn) = X(tn) − XT (tn)

XC(tn) =

〈
XF (tm)| mod(n, 12) = m

〉
XA(tn) = XF (tn) − XC(tn) (9)

where the trend is defined by fitting a polynomialP to X(tn),
〈•〉 denotes an average over the record, and〈•|condition〉 de-
notes a conditional average.

The noise-reduced version ofX(t), denoted with a super-
script (n), is given by subtracting out the externally-forced
componentsXC andXE

=µEVIA:

X(n)(t) = X(t) − XC(t) − µEVIA(t)

= XT (t) + XU (t)
(10)

The trends of the noise-reduced and original series are
identical because the components removed have zero mean
and no trend, but the variability of the new series is lower,
improving the statistical significance of trends.

This decomposition was applied to the CO2 sinkFS , yield-
ing noise-reduced seriesF (n)

S , C
′(n)
a =FE−F

(n)
S and airborne

fraction a
(n)
E =C

′(n)
a /FE . The sensitivityµ was chosen to

minimise the variance ofFU
S =FA

S −µEVIA, thus placing as
much as possible of the anomalyFA

S into the EVI-correlated
component. With lowpass-filtered seriesFS and EVI, us-
ing an EVI defined from Nĩno3, the resulting sensitivity is
µ=0.9.

With noise reduction, the GLA series for 1959–2006
yielded a proportional growth rate in total airborne frac-
tion, r(aE

(n)), of 0.24% y−1 (5% and 95% confidence lim-
its −0.04 and 0.50% y−1; probability P=0.92 of a positive
trend), around a meana(n)

E of 0.43. The result with the GLB
series is similar but with a slightly lower P of 0.88. Noise
reduction therefore does not change the mean result from the
above initial trend estimate but provides improved statisti-
cal reliability, raising P from 0.81 to about 0.9. This more
complete analysis with multiple CO2 series confirms our ear-
lier result (Canadell et al., 2007) which was derived from the
GLB series.

Figure 5 shows the noise-reduced airborne fraction, to-
gether with the corresponding noise-reduced land and ocean
fractions defined in Eq. (4). The ocean fraction was calcu-
lated using a model (Le Quéŕe et al., 2007) for the time his-
tory of the ocean uptake flux (FOceanAir), and the land fraction
was calculated as 1−aE−oE (Eq. 5). As previously reported
(Canadell et al., 2007), there is a highly significant decreas-
ing trend in ocean fraction atr(oE)=0.4±0.1 y−1 (5% and
95% confidence linits). There is no significant trend in the
land fraction. This indicates that the 1959–2006 increase in
aE has been driven mainly by a relative weakening of the
ocean sink compared with total emissionsFE . Although the
ocean sink has increased in absolute terms, it has not kept
pace with growth in total emissions.

We also determined the trend in the apparent airborne
fraction (aFoss), even thoughaE is the more fundamental
carbon-cycle attribute for reasons given in Sect. 2. The pro-
portional growth rate ofaFoss for 1959–2006 is small and
negative, withr(aFoss)≈−0.2±0.2% y−1 around a mean of
0.57. The different trends inaE and aFoss are easily un-
derstandable by noting thatr(aFoss) is the sum ofr(aE)

and the growth rater(aFoss/aE) in the ratio of the two
airborne fractions. This ratio,aFoss/aE=1+FLUC/FFoss,
decreased fairly steadily through 1959–2006 at a rate
r(aFoss/aE)≈−0.4% y−1 (around an averageaFoss/aE of
1.32) becauseFFossgrew more quickly thanFLUC (Canadell
et al., 2007). The decreasing trend inFLUC/FFoss therefore
accounts fully for the observed different signs in the growth
rates ofaFossandaE .

Biogeosciences, 5, 1601–1613, 2008 www.biogeosciences.net/5/1601/2008/
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Two further methodological checks were applied to all es-
timates of airborne-fraction growth rates. First, estimates of
growth rates liker(aE) were found to have some sensitivity
to the exact starting and ending times of the CO2 series used
to determineC′

a . The extent of this sensitivity was investi-
gated with an enhanced stochastic trend estimation method,
in which bootstrap subsampling of the time series under test
was used to reduce sensitivity to starting and ending times
(see Appendix C for details). Results from this method were
statistically consistent with those given above, confirming
the robustness of the estimated trends.

Second, the entire analysis was also carried out using
individual-station CO2 series from MLO and SPO instead
of the globally-averaged series GLA and GLB. Results were
similar to those with the globally-averaged series, despite the
fact that [CO2] at MLO was higher than at SPO by an off-
set which increased from∼1 ppm in the 1960s to∼3 ppm
in 2000–2005. By using an exponential-growth model for
Ca it can be shown that this offset accounts for a statistically
insignificant difference inr(aE) of about 0.06% y−1.

4.3 Uncertainty in emissions from land use change

The largest uncertainty in the above results arises fromFLUC.
The time series used here (Canadell et al., 2007) gives
FLUC≈1.5 PgC y−1 for the 1990s, with little change through
the period 1959–2006. This is in the midrange of three exist-
ing estimates for the 1990s: 2.15 PgC y−1 (Houghton, 2003),
1.1 PgC y−1 (Achard et al., 2004) and 0.9 PgC y−1 (DeFries
et al., 2002). The latter two values were based on remote-
sensing estimates of cleared area, while the first was based on
forest inventories and was subsequently revised downward
to 1.5 PgC y−1 (Canadell et al., 2007). A recent satellite-
based estimate of humid tropical forest clearing (Hansen et
al., 2008) gives an area clearing rate similar to Achard et
al. (2004) but no estimate ofFLUC. The large uncertainty in
FLUC originates from uncertainties in both cleared area and
biomass (Houghton, 2005) and changes in inventory method-
ologies (Grainger, 2008).

Our estimated positive trend in airborne fraction
(r(aE)≈0.24 y−1) is reduced either if the mean value of
FLUC is proportionally revised downward, or if the trend in
FLUC is revised upward. Therefore, to assess the effect of
possible uncertainties inFLUC, we supplemented our primary
calculation with two additional calculations using perturbed
time series forFLUC in directions which reduce the inferred
airborne fraction trend. The first (“perturbation 1”) uses an
FLUC time series which is uniformly reduced to 0.6 of the
primary values used here, giving values similar to the lowest
estimate quoted above, 0.9 PgC y−1 for the 1990s (DeFries
et al., 2002). The second (“perturbation 2”) assumes that
the growth rate in FLUC is 1% y−1 higher than the time se-
ries used in the primary calculation, giving a perturbedFLUC
which is the same as the primary value in 2000 but 0.67 of
the primary value in 1960.

Table 1. Mean values and proportional growth rates of airborne
fraction (aE), land fraction (lE) and ocean fraction (oE), from pri-
mary calculation and two perturbations to the time series for the
net emission flux from land use change (FLUC). In perturbation 1,
FLUC is reduced uniformly to 0.6 of its primary value. In pertur-
bation 2, a 1% growth rate enhancement is aplied toFLUC by pre-
serving the primary value in 2000 and reducing earlier estimates.
Mean values are intercepts of linear trend lines in 1980. Propor-
tional growth rates (in % y−1) are given with 5% to 95% confidence
intervals. Trends in brackets are not significantly different from zero
(90% confidence level).

Quantity Case Mean Growth rate
(% y−1)

Air (aE) Primary 0.43 +0.2±0.2
Land (lE) calculation 0.27 (+0.1±0.4)
Ocean (oE) 0.30 −0.4±0.1

Air (aE) Perturbation 1: 0.47 (+0.1±0.2)
Land (lE) reduceFLUC 0.20 +0.8±0.9
Ocean (oE) 0.33 −0.6±0.1

Air (aE) Perturbation 2: 0.45 (−0.0±0.2)
Land (lE) increaser(FLUC) 0.24 +0.9±0.4
Ocean (oE) 0.31 −0.7±0.1

The effects of these perturbations are shown in Table 1.
Perturbation 1 yields an estimated trendr(aE) in airborne
fraction which is still positive but not significantly differ-
ent from zero, while perturbation 2 yields nearly zero trend.
However, both perturbations also have the effects of increas-
ing the positive trend in the land fraction to values signifi-
cantly above zero, and further decreasing the already nega-
tive trend in the ocean fraction. Both of perturbations 1 and
2 are near the edges of the present uncertainty bands around
estimates of emissions from land use change. Opposite per-
turbations, which are also possible, would influence our pri-
mary trend estimates in the opposite sense and increase the
estimated trendr(aE).

4.4 Implications

An increasing total airborne fraction implies that total sinks
are increasing more slowly than total emissions, so that sinks
are not keeping pace with emissions. This can be quantified
by using Eq. (1) to write the relationship between the growth
rater(−FS) of total sinks and the growth rater(FE) of total
emissions, obtaining:

r (−FS) = r (FE) −

(
aE

1 − aE

)
r (aE) (11)

1.6(±0.2) 1.8(±<0.1) − 0.2(±0.2)
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Fig. 6. (a) Factors in the Kaya identity,FE = PghE . The Kaya
identity in this form expresses total emissions (FE , dashed black)
as the product of global population (P , red), per capita GDP-PPP
(g, green) and the total carbon intensity of the global economy (hE ,
blue). The carbon intensityhE is the combined global CO2 emis-
sion from fossil fuels and land use change per unit global GDP-PPP.
(b) Factors in the extended Kaya identity,C′

a = PghEaE . This
identity expresses the increase in the CO2 growth rate (C′

a , dashed
black) as the product of the Kaya factorsP (red), g (green) and
hE (blue), together with the airborne fractionaE (beige). In both
panels, all factors are normalised to 1 in 1980.

The numbers beneath each term give average values and
uncertainties in trends (in % y−1) for 1959–2006. Sinks
grew slightly slower than emissions, though both grew sig-
nificantly.

The observed increase in the airborne fraction can be
compared with available predictions from C4MIP, the Cou-
pled Climate-Carbon Cycle Model Intercomparison Project
(Friedlingstein et al., 2006). Eleven participating models
gave scattered predictions forr(aE) for 1959–2006, aver-
aging r(aE)=0.27±0.36% y−1 across all models and with
9 models predicting a negative trend, opposite in sign to the

observation. Equation (11) shows that this is a sensitive test
for carbon-climate model predictions of trends in total sinks,
because the sign ofr(aE) is determined by the small differ-
ence between the two larger quantitiesr(FE) and r(−FS).
Therefore, the fact that model predictions forr(aE) are not
in agreement with each other or with observations is not an
indication that all coupled carbon-climate model predictions
should be dismissed.

5 Unified assessment of the drivers of CO2 growth

To assess the relative effects on CO2 growth of changes in
airborne fraction and anthropogenic drivers of CO2 emis-
sions, we use an extended form of the Kaya identity. In its
usual form (Nakicenovic et al., 2000; Nakicenovic, 2004;
Raupach et al., 2007), the Kaya identity expresses global
fossil-fuel CO2 emissions asFFoss=Pgef , whereP is global
population,g=G/P is per capita income or per capita GDP,
e=E/G is the energy intensity of GDP,f =FFoss/E is the
fossil-carbon intensity of energy,G is global GDP-PPP, and
E is global primary energy consumption. An equivalent ex-
pression isFFoss=PghFoss, wherehFoss=FFoss/G=ef is the
fossil-fuel carbon intensity of the global economy.

We modify this identity in two ways, first to describe to-
tal emissions (FE=FFoss+FLUC) rather thanFFoss. Land
use change emissions can be written in Kaya form as
FLUC=PghLUC, where hLUC=FLUC/G is the land-use-
change carbon intensity of the global economy, correspond-
ing tohFossabove. The Kaya identity for total CO2 emissions
is then

FE = PghFoss+ PghLUC = PghE (12)

where hE=FE/G=hFoss+hLUC is the total carbon inten-
sity of the global economy, accounting for both fossil fuels
and land use change. Second, we describe the atmospheric
CO2 growth rate (C′

a) by introducing the airborne fraction
aE=C′

a/FE into Eq. (12), obtaining an extended Kaya iden-
tity in which aE appears as an extra factor:

C′
a = PghEaE (13)

The proportional growth rates of factors in Eqs. (12) and
(13) are related by

r(FE) = r(P ) + r(g) + r(hE)

r(C′
a) = r(P ) + r(g) + r(hE) + r(aE) (14)

becauser(X)=X′/X yields r(XYZ)=r(X)+r(Y )+r(Z)

for anyX, Y andZ. All terms in Eq. (14) have units time−1.
Note thatr(C′

a)=C′′
a/C′

a is the proportional growth rate of
the CO2 growth rate, a measure of the second derivative of
Ca .

Figures 6a and b respectively show time series of the fac-
tors in the Kaya identity forFE , (Eq. 12) and the extended
Kaya identity forC′

a (Eq. 13) for the period 1959–2006, with
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Table 2. Proportional growth rates (r(X)=X′/X, in % y−1) of fac-
tors in the Kaya identity (FE=ghE) and the extended Kaya iden-
tity (C′

a=PghEaE), for periods 1959–2006, 1959–1999 and 2000–
2006 (inclusive of end years). Errors denote approximate 5% to
95% confidence intervals. Where not shown, errors are less than
0.1% y−1. Roundoff errors are responsible for slight departures
from Eq. (14).

Period 1959–2006 1959–1999 2000–2006

r(FE) 1.8 1.9 3.0
r(P ) 1.7 1.7 1.2
r(g) 1.8 1.8 3.1±0.1
r(hE) −1.7 −1.7 −1.2±0.1
r(aE) 0.2±0.2 0.2±0.3 0.2±2.7
r(C′

a) 1.9±0.3 1.9±0.4 3.0±2.7

series are normalised to 1 in 1980 so that trends can be com-
pared. Figures 7a and b show the corresponding proportional
growth rates (Eq. 14), with 7-year smoothing for clarity. Av-
erage growth rates of all factors, with 5% to 95% confidence
intervals, are given in Table 2.

We first consider trends in total emissions (Figs. 6a and
7a). The average growth rater(FE) over 1959–2006 was
1.8% y−1, with interannual variability from less than 0.5
to over 3% y−1. This growth was driven by additive con-
tributions of +1.7% y−1 from r(P ) (growth in population),
+1.8% y−1 from r(g) (growth in income), and−1.7% y−1

from r(hE) (reduction or improvement in the total carbon
intensity of the global economy). Uncertainties in all these
growth rates are low (0.1% y−1 or less; Table 2).

There were significant interdecadal trends in the emis-
sions driversP , g andhE through 1959–2006. Growth in
population (P ) slowed from 2 to 1.2% y−1. Per capita in-
come (g) grew more rapidly since 2000 than over the pre-
vious four decades, withr(g)=3.0% y−1 over 2000–2006
compared with 1.8% y−1 over 1959–1999. Also, the nega-
tive growth rate (improvement) in the carbon intensity of the
economy (hE) declined since 2000:r(hE) was−1.2% y−1

over 2000–2006, compared with a mean of−1.7% y−1 over
1959–1999. (Figures forr(hE) differ from Canadell et al.,
2007 for two reasons: the use of GDP-PPP here and GDP-
MER (Market Exchange Rate) there, and the inclusion here
of FLUC in hE). These trends have together driven a substan-
tial recent increase in the growth rate of total emissions, with
r(FE)=3.0% y−1 over 2000–2006 compared with 1.9% y−1

over 1959–1999. The growth rate inFE (=FFoss+FLUC) is
slightly lower than the recent growth rate in fossil-fuel emis-
sions (r(FFoss)=3.3% y−1 over 2000–2006) because there
has been no recent growth in the land-use-change emission
(FLUC).
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Fig. 7. (a) proportional growth rates (% y−1) of factors in the
Kaya identity,FE=PghE ; (b) growth rates of factors in the ex-
tended Kaya identity,C′

a=PghEaE ; (c) growth rates of fac-
tors in the noise-reduced version of the extended Kaya identity,

C
′(n)
a =PghEa

(n)
E

, where (n) denotes removal of the EVI-correlated
fluctuating component. All growth rates are smoothed with a 7-year
running mean. Colours match Fig. 6.

Trends in CO2 growth rate (Figs. 6b and 7b) have more
short-term variability. Beneath this variabilityC′

a has in-
creased inexorably over the last five decades, reaching
an average ofC′

a≈4.1±0.1 PgC y−1 or [CO2]
′=1.9 ppm y−1

through 2000–2006 (Canadell et al., 2007). Using Eq. (14),
the drivers of this increase can be expressed as additive con-
tributions from the growth ratesr(P ), r(g), r(hE) andr(aE)

to r(C′
a)=C′′

a/C′
a , the growth rate of the CO2 growth rate.

Even with the 7-year smoothing used here,r(C′
a) fluctuated

strongly around a mean of +1.9% y−1, with contributions
from r(P ), r(g), r(hE) and r(aE) given in Table 2. Av-
eraged over the whole period 1959–2006, most of the in-
terdecadal trend (r(C′

a)≈1.9% y−1) was attributable to in-
creasing emissions (r(FE)≈1.8% y−1), caused in turn by
the growth rates ofP , g and hE . A small component of
r(Ca

′), about 0.2% y−1 out of 1.9% y−1, was caused by the

www.biogeosciences.net/5/1601/2008/ Biogeosciences, 5, 1601–1613, 2008



1610 M. R. Raupach et al.: Increasing CO2 airborne fraction

interdecadal growth in airborne fraction,r(aE) (these figures
do not satisfy Eq. (14) exactly because of statistical uncer-
tainties and roundoff errors).

Most of the strong interannual variability inr(C′
a) orig-

inates from variability in the CO2 exchange fluxFS and
thence the airborne fraction. Much of this variability in turn
is associated with the EVI. Subtracting the EVI-correlated
fluctuating component out ofC′

a andaE as in Sect. 4.2, we
obtain a noise-reduced form of the extended Kaya identity,
C

′(n)
a =PghEa

(n)
E . Figure 7c shows the growth rates of ex-

tended Kaya factors with this noise reduction. The variability
in each ofr(Ca

′(n)) andr(a
(n)
E ) is about half of the equivalent

variability without noise reduction (Fig. 7b).

6 Discussion and conclusions

This paper has offered two main conclusions, the first
being that the total airborne fraction is increasing at
r(aE)≈0.2% y−1, with probability≈0.9 of a positive trend.
The immediate significance is that since 1959, growth in nat-
ural (land and ocean) sinks has fallen slightly behind growth
in total (fossil plus land use change) emissions. This con-
clusion needs to be interpreted with regard for three factors:
(1) there is uncertainty both from the statistics of interan-
nual variability and also from imprecisely determined emis-
sions from land use change; (2) the result does not imply that
“sinks are weakening”, but rather shows that growth in sinks
has not kept pace with growth in emissions; (3) the airborne
fraction is a simple, robust diagnostic property of the carbon
cycle which can provide the above conclusions but cannot
partition trends in sinks between land and ocean – this re-
quires additional information, supplied in Fig. 5 by modelled
estimates of the ocean sink (Le Quéŕe et al., 2007).

The airborne fraction has another significance: it provides
the gateway between the anthropogenic forcing and the at-
mospheric response of the carbon cycle. Total CO2 emis-
sions influence atmospheric CO2 growth, and thence the CO2
contribution to anthropogenic radiative forcing and climate
change, via a set of carbon-cycle feedbacks with combined
effects given by the airborne fraction. The relative roles of
biophysical and anthropogenic influences can then be quan-
tified by the extended Kaya identity, Eq. (13).

This leads to our second main conclusion: from 1959 to
2006, trends in anthropogenic factors (population, per-capita
income and carbon intensity) have had a much greater effect
on the growth rate of atmospheric CO2 than the integrated
trends in biophysical factors expressed by changes in the air-
borne fraction. The extended Kaya identity expresses the in-
crease in the CO2 growth rate (1.9% y−1 over 1959–2006) as
the sum of the growth rates of four global driving factors:
population (P ) contributed +1.7% y−1; per capita income
(g) contributed +1.8% y−1; the total carbon intensity of the
global economy (hE) contributed−1.7% y−1; and the air-
borne fraction (aE) contributed +0.2% y−1 with strong inter-

annual variability. The first three factors, the anthropogenic
drivers, have therefore dominated the last, biophysical driver
as contributors to accelerating CO2 growth.

Further, the extended Kaya identity allows estimation of
the relative impacts on future [CO2] of likely future trends
in all four drivers. To do this we consider the time interval
1tx to reach a specified future “target” concentration [CO2]x
at a given, steadyr(C′

a) (the growth rate of the CO2 growth
rate). The interval1tx can be determined analytically (Ap-
pendix D). We take the target [CO2]x=450 ppm and initial
conditions [CO2]=383 ppm and [CO2]′=2 ppm y−1 in 2008.
If r(C′

a) continues at 2.0% y−1 (approximately the average
for 1959–2006), then [CO2] will reach 450 ppm in 26 years,
in 2034. An increase inr(C′

a) of 1% y−1, by any mechanism,
shortens the time to reach 450 ppm by about 2.6 years. Since
2000, the combination of influences from the anthropogenic
emissions driversP , g andhE have indeed increasedr(C′

a)

by more than 1% y−1, as discussed above. For future growth
in airborne fraction to have a comparable influence,r(aE)

would need to increase several-fold from its 1959–2006 av-
erage of 0.2% y−1. This is well outside the range of predic-
tions for r(aE) from C4MIP coupled carbon-climate model
predictions for trends in airborne fraction through the 21st
century (Friedlingstein et al., 2006).

To reduce emissions and thence atmospheric CO2, it is
necessary to reduce the growth rates of the emissions drivers
P , g andhE in some combination. Growth in population
(P ) is presently just over 1% y−1 and is forecast to decline to
zero in the second half of the 21st century (Lutz et al., 2001).
Growth in global per capita income (g) is needed to improve
quality of life in the developing world. This leaves the pri-
mary option as increasing the negative growth rate in carbon
intensity (hE). To achieve a reduction rate in total emissions
of −2% y−1 (which would halve emissions in 35 years) in the
presence of global growth rates of 2% y−1 in g and 1% y−1

in P , it is necessary to achieve a decline inhE at a rate of
around−5% y−1, three times the 1959–2006 average. This
highlights the significance of recent trends in emissions and
carbon intensity.

Appendix A

Data sources and treatments

A1 CO2 concentrations and growth rates

Four monthly CO2 time series were used, denoted MLO,
SPO, GLA and GLB. The first two were monthly time se-
ries for baseline [CO2] at Mauna Loa (MLO, commencing
March 1958) and the South Pole (SPO, commencing June
1957) from the Scripps Institution of Oceanographyhttp:
//scrippsco2.ucsd.edu/data/data.html(Keeling et al., 2001,
2005). The versions of these series used here were gap-
filled and had the quasi-regular annual cycle removed by
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subtraction of a 4-harmonic fit with a linear gain factor. The
monthly CO2 growth rate with annual cycle removed was
calculated from each series by a centred first difference. The
third and fourth series were estimates of a globally aver-
aged CO2. The GLA series was formed from the average
of MLO and SPO. The GLB series consisted of a globally-
averaged CO2 series available from January 1980 onward,
augmented with MLO data for 1958–1979, with both se-
ries from the Earth Systems Research Laboratory of the
National Oceanographic and Atmospheric Administration
(NOAA-ESRL) http://www.esrl.noaa.gov/gmd/ccgg/trends/.
The GLB series includes the annual cycle. Its trend is smooth
but there is a discontinuity in the annual cycle at the join in
1980. The annual cycle was removed for determination of
the trend inaE .

A2 CO2 emissions

The emissions datasets are identical to those in Canadell
et al. (2007) and Raupach et al. (2007). Annual data on
FFoss to 2004 are from the CDIAC (Marland and Rotty,
1984; Marland et al., 2006)http://cdiac.ornl.gov/, augmented
by estimates for 2005 and 2006. Data onFLUC are from
Houghton (2003) as revised in Canadell et al. (2007). A
monthly series forFE=FFoss+FLUC for 1958 onward was
constructed by spline interpolation of annual series forFFoss
andFLUC. It is likely that there are repeating annual cycles
in bothFFossandFLUC caused by seasonal patterns in energy
consumption and land management practices, but interpola-
tion of annual data gives a good approximation to monthly
series with the annual cycle removed.

A3 ENSO indices

Five ENSO indices were used: Niño3, Nĩno3.4, Nĩno4,
SOI, from http://www.cpc.ncep.noaa.gov/data/indices/sstoi.
indices, and the MEI, from http://www.cdc.noaa.gov/
ClimateIndices/List/. The MEI is constructed from the first
principal components of sea-level pressure, zonal and merid-
ional components of the surface wind, sea surface tempera-
ture, surface air temperature, and total sky cloudiness frac-
tion (Wolter and Timlin, 1993, 1998).

A4 Volcanic aerosol index

VAI data in latitude bands (Ammann et al., 2003), to 1998,
were obtained fromftp://ftp.ncdc.noaa.gov/pub/data/paleo/
climate forcing/volcanicaerosols/ammann2003bvolcanics.
txt. A global VAI was calculated by averaging with area
weighting. The data were extended to 2006 assuming no
volcanic activity between 1998 and 2006, consistent with
Mishchenko et al. (2007).

A5 GDP-PPP and population

For 1970 and later, data sources are identical to those in
Raupach et al. (2007). Global population (P ) was from
the United Nations Statistics Divisionhttp://unstats.un.org/
unsd/snaama/selectionbasicFast.asp. Global GDP-PPP (G)
was from the World Economic Outlook of the Interna-
tional Monetary Fundhttp://www.imf.org/external/pubs/ft/
weo/2006/02/data/download.aspx. For times before 1970,
both P and G were obtained from “Historical Statistics
for the World Economy: 1-2003 AD” by Angus Maddison
http://www.ggdc.net/maddison/. There was good agreement
between these datasets in the overlap period 1970–2003.

Appendix B

Time series analysis

B1 Normalised cumulative spectra and cospectra

Let X(t) andY (t) be continuous processes in time, or dis-
crete time series, with zero mean. The normalised cumula-
tive spectrum NC[X,X](f ) of X(t) is the integral from 0 tof
of the spectrum of the unit-variance processX(t)/σX (where
σX is the standard deviation ofX); it is the fraction of the
variance ofX contributed by frequencies less thanf . The
normalised cumulative cospectrum NC[X,Y ](f ) of X(t) and
Y (t) is the integral from 0 tof of the cospectrum of the unit-
variance processesX(t)/σX andY (t)/σY ; it is the fractional
contribution to theXY covariance Cov[X,Y ] from frequen-
cies less thanf , normalised so that NC[X,Y ](f ) approaches
the correlation coefficient Cov[X,Y ]/(σXσY ) asf →∞.

B2 Fourier-transform lowpass filtering

The lowpass-filtered version of a seriesX(t) was obtained by
(a) taking the Fourier transform ofX(t); (b) setting Fourier
components above the lowpass cutoff frequency to zero; (c)
taking the inverse Fourier transform.

Appendix C

Trend estimation

The trend of a seriesX(t) was estimated using a stochas-
tic method as in (Le Qúeŕe et al., 2007) and (Canadell et
al., 2007), accounting for temporal correlation between data
points. First, the trendXT was found by conventional least-
squares regression, yielding a trend lineXT

=x0+x1t . The
lagged autocorrelation function of the residual (X−XT ) was
fitted with an autoregressive (AR) model (Box et al., 1994)
and used to generate an ensemble of 1000 stochastic realisa-
tions of the data with mean trendXT and residuals correlated
as in the data itself. The probability density function (PDF)
of the slopes (x1) in this ensemble was calculated, yielding
trend statistics.
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For supplementary investigation of the sensitivity of trends
to the start and end points of the seriesX(t), an “enhanced
stochastic” method was used. This extends the stochastic
method by taking the slope of the trend lineXT to be the
mean of a 1000-member ensemble obtained by “bootstrap”
(with replacement) sampling of subseries ofX(t) with ran-
dom starting and stopping times (t0, t1), such that (t1−t0) is
at least a minimum fractionfmin of the total duration of the
data seriesX(t). We tookfmin=0.8. The statistics of this en-
semble are similar to those of the original seriesX(t), with
sensitivity to choice oft0 and t1 reduced by averaging over
many realisations.

Appendix D

Time to reach a specified CO2 concentration

We seek the time interval1tx to reach a specified future
concentration[CO2]x , with a given steady growth rate of
the CO2 growth rate,rC=r(C′

a), and given initial concen-
tration [CO2]0 and rate of increase[CO2]

′

0 at timet0. Thus
rC=[CO2]

′′

0/[CO2]
′

0, and is held steady. The equation gov-
erning[CO2](t) is

[CO2]
′′

= rC[CO2]
′ (D1)

and the resulting CO2 trajectory is

[CO2](t) = [CO2]0 +
[CO2]

′

0

rC
exp(rC(t − t0) − 1) (D2)

At a givenrC , the time to reach[CO2]x is

1tx =
1

rC
ln (rCT − 1) (D3)

whereT =([CO2]x−[CO2]0)/[CO2]
′

0 is a time scale. Physi-
cally,T is the time to reach[CO2]x when the rate of increase
in [CO2] is held steady at its initial value[CO2]

′

0. If rC>0,
then1tx is less thanT . In the limit rC → 0,1tx approaches
T .
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