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Foreword

The Scientific Committee on Problems of the Environment (SCOPE) publishes this
book as the second in a series of rapid assessments of the important biogeochemical
cycles that are essential to life on this planet. SCOPE’s aim is to make sure that experts
meet on a regular basis to discuss and summarize recent advances within disciplines and
evaluate their possible significance in understanding environmental problems and
potential solutions. The SCOPE rapid assessment series attempts to ensure that the
information so generated is published and made available within a year from the date
of the synthesis. These assessments provide timely, definitive syntheses of important
issues for scientists, students, and policy makers. 

The present volume is intended to be a successor to SCOPE carbon books of the
1970s and 1980s and to complement recent Intergovernmental Panel on Climate
Change reports on the scientific basis of climate change, the impacts of climate change,
and the potential for mitigation of climate change. This volume’s main concept is that
the carbon cycle, climate, and humans work together as a single system. This type of sys-
tem-level approach focuses the science on a number of issues that are almost certain to
be important in the future. It should provide a timely examination of the practical con-
sequences of this knowledge being used in the sustainability of ecosystems affected by
humans.

This synthesis volume is a joint project of two bodies sponsored by the International
Council of Science (ICSU): SCOPE and the Global Carbon Project (GCP). SCOPE
is one of twenty-six interdisciplinary bodies established by the ICSU to address cross-
disciplinary issues. In response to emerging environmental concerns, the ICSU estab-
lished SCOPE in 1969 in recognition that many of these concerns required scientific
input spanning several disciplines represented within its membership. Representatives
of forty member countries and twenty-two international, disciplinary-specific unions,
scientific committees, and associates currently participate in the work of SCOPE,
which directs particular attention to developing countries. The mandate of SCOPE is
to assemble, review, and synthesize the information available on environmental changes
attributable to human activity and the effects of these changes on humans; to assess and
evaluate methodologies for measuring environmental parameters; to provide an intel-
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ligence service on current research; and to provide informed advice to agencies engaged
in studies of the environment.

The recently formed Global Carbon Project is a shared partnership between the
International Geosphere-Biosphere Programme (IGBP), the International Human
Dimensions Programme on Global Environmental Change (IHDP), and the World
Climate Research Programme (WCRP). The attention of the scientific community, pol-
icy makers, and the general public increasingly focuses on the rising concentration of
greenhouse gases, especially carbon dioxide (CO2), in the atmosphere and on the car-
bon cycle in general. Initial attempts, through the United Nations Framework Con-
vention on Climate Change and its Kyoto Protocol, are underway to slow the rate of
increase of greenhouse gases in the atmosphere. These societal actions require a scien-
tific understanding of the carbon cycle and are placing increasing demands on the
international science community to establish a common, mutually agreed knowledge
base to support policy debate and action. The Global Carbon Project aims to meet this
challenge by developing a complete picture of the global carbon cycle, including both
its biophysical and human dimensions together with the interactions and feedbacks
between them. 

John W. B. Stewart, Editor-in-Chief

SCOPE Secretariat
51 Boulevard de Montmorency, 75016 Paris, France
Executive Director: Véronique Plocq Fichelet
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1 
The Global Carbon Cycle: 
Integrating Humans, Climate, 
and the Natural World
Christopher B. Field, Michael R. Raupach,
and Reynaldo Victoria

The Carbon-Climate-Human System
It has been more than a century since Arrhenius (1896) first concluded that continued
emissions of carbon dioxide from the combustion of fossil fuels could lead to a warmer
climate. In the succeeding decades, Arrhenius’s calculations have proved both eerily pre-
scient and woefully incomplete. His fundamental conclusion, linking fossil-fuel com-
bustion, the radiation balance of the Earth system, and global climate, has been solidly
confirmed. Both sophisticated climate models (Cubasch et al. 2001) and studies of past
climates (Joos and Prentice, Chapter 7, this volume) document the link between
atmospheric CO2 and global climate. The basic understanding of this link has led to a
massive investment in detailed knowledge, as well as to political action. The 1992
United Nations Framework Convention on Climate Change is a remarkable accom-
plishment, signifying international recognition of the vulnerability of global climate to
human actions (Sanz et al., Chapter 24, this volume).

Since Arrhenius’s early discussion of climate change, scientific understanding of the
topic has advanced on many fronts. The workings of the climate system, while still
uncertain in many respects, are well enough known that general circulation models
accurately reproduce many aspects of past and present climate (McAvaney et al. 2001).
Greenhouse gas (GHG) emissions by humans are known with reasonable accuracy
(Andres et al. 1996), including human contributions to emissions of greenhouse gases
other than CO2 (Prinn, Chapter 9, this volume). In addition, a large body of literature
characterizes land and ocean processes that release or sequester greenhouse gases in the
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context of changing climate, atmospheric composition, and human activities. Much of
the pioneering work on land and ocean aspects of the carbon cycle was collected in or
inspired by three volumes edited by Bert Bolin and colleagues and published by
SCOPE (Scientific Committee on Problems of the Environment) in 1979 (Bolin et al.
1979), 1981 (Bolin 1981), and 1989 (Bolin et al. 1989).

The Intergovernmental Panel on Climate Change (IPCC), established by the
United Nations as a vehicle for synthesizing scientific information on climate change,
has released a number of comprehensive assessments, including recent reports on the sci-
entific basis of climate change (Houghton et al. 2001), impacts of climate change
(McCarthy et al. 2001), and potential for mitigating climate change (Metz et al. 2001).
These assessments, which reflect input from more than 1,000 scientists, summarize the
scientific literature with balance and precision. The disciplinary sweep and broad par-
ticipation of the IPCC efforts are great strengths.

This volume is intended as a complement to the IPCC reports and as a successor to
the SCOPE carbon-cycle books of the 1970s and 1980s. It extends the work of the
IPCC in three main ways. First, it provides an update on key scientific discoveries in the
past few years. Second, it takes a comprehensive approach to the carbon cycle, treating
background and interactions with substantial detail. Managed aspects of the carbon
cycle (and aspects subject to potential future management) are discussed within the same
framework as the historical and current carbon cycle on the land, in the oceans, and in
the atmosphere. Third, this volume makes a real effort at synthesis, not only summa-
rizing disciplinary perspectives, but also characterizing key interactions and uncertain-
ties between and at the frontiers of traditional disciplines.

This volume’s centerpiece is the concept that the carbon cycle, climate, and humans
work together as a single system (Figure 1.1). This systems-level approach focuses the sci-
ence on a number of issues that are almost certain to be important in the future and that,
in many cases, have not been studied in detail. Some of these issues concern the driving
forces of climate change and the ways that carbon-climate-human interactions modulate
the sensitivity of climate to greenhouse gas emissions. Others concern opportunities for
and constraints on managing greenhouse gas emissions and the carbon cycle.Insert Figure 1.1 here

The volume is a result of a rapid assessment project (RAP) orchestrated by SCOPE
(http://www.icsu-scope.org) and the Global Carbon Project (GCP, http://www.global-
carbonproject.org). Both are projects of the International Council for Science (ICSU,
http://www.icsu.org), the umbrella organization for the world’s professional scientific
societies. The GCP has additional sponsorship from the World Meteorological Orga-
nization (http://www.wmo.ch) and the Intergovernmental Oceanographic Commission
(http://ioc.unesco.org/iocweb/). The RAP process assembles a group of leading scien-
tists and challenges them to extend the frontiers of knowledge. The process includes
mutual education through a series of background papers and an intensive effort to
develop cross-disciplinary perspectives in a series of collectively written synthesis
papers. To provide timely synthesis on rapidly changing issues, the timeline is aggres-
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Figure 1.1. (a) Schematic representation of the components of the coupled carbon-
climate-human system and the links among them. Solid lines and (+) indicate positive
feedbacks, feedbacks that tend to release carbon to the atmosphere and amplify climate
change. Dashed lines and (-) indicate negative feedbacks, feedbacks that tend to sequester
carbon and suppress climate change. GHG, in the center box, is greenhouse gases. ARD,
in the lower right of the land box, is afforestation, reforestation, deforestation, the suite
of forestry activities identified as relevant to carbon credits in the Kyoto Protocol. Over
the next century, the oceans will continue to operate as a net carbon sink, but the land
(in the absence of fossil emissions) may be either a source or sink. (b) Two complementary
perspectives on human drivers of carbon emissions. In the Kaya identity widely used for
economic analysis (left), emissions are seen as a product of four factors: population, per
capita gross world product, the energy intensity of the gross world product, and the
carbon intensity of energy production. From a political science perspective (right), the
drivers emerge from interactions among policy, institutions, social organization, and
knowledge and values.
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sive. All of the authors worked with the editors and the publisher to produce a finished
book within nine months of the synthesis meeting.

The book is organized into seven parts. Part 1 contains the crosscutting chapters, which
address the current status of the carbon cycle (Sabine et al., Chapter 2), the future carbon
cycle of the oceans and land (Gruber et al., Chapter 3), possible trajectories of carbon emis-
sions from human actions (Edmonds et al., Chapter 4), approaches to reducing emissions
or sequestering additional carbon (Caldeira et al., Chapter 5), and the integration of car-
bon management in the broader framework of human and Earth-system activities (Rau-
pach et al., Chapter 6). Part 2 provides an overview of the carbon cycle, with chapters on
historical patterns (Joos and Prentice, Chapter 7), recent spatial and temporal patterns
(Heimann et al., Chapter 8), greenhouse gases other than CO2 (Prinn, Chapter 9), two-
way interactions between the climate and the carbon cycle (Friedlingstein, Chapter 10),
and the socioeconomic trends that drive carbon emissions (Nakicenovic, Chapter 11).
Parts 3 through 7 provide background and a summary of recent findings on the carbon
cycle of the oceans (Le Quéré and Metzl, Chapter 12; Greenblatt and Sarmiento, Chap-
ter 13), the land (Foley and Ramankutty, Chapter 14; Baldocchi and Valentini, Chapter
15; Nabuurs, Chapter 16), land-ocean margins (Richey, Chapter 17; Chen, Chapter 18),
humans and the carbon cycle (Romero Lankao, Chapter 19; Lebel, Chapter 20; Tschirley
and Servin, Chapter 21), and purposeful carbon management (Sathaye, Chapter 22;
Edmonds, Chapter 23; Sanz et al., Chapter 24; Manne and Richels, Chapter 25; Bakker,
Chapter 26; Brewer, Chapter 27; Smith, Chapter 28; and Robertson, Chapter 29).

The key messages from this assessment focus on five main themes that cut across all
aspects of the carbon-climate-human system. The overarching theme of the book is that
all parts of the carbon cycle are interrelated. Understanding will not be complete, and
management will not be successful, in the absence of a framework that considers the full
set of feedbacks, a set that almost always transcends both human actions and unman-
aged systems. This systems perspective presents many challenges, because the interac-
tions among very different components of the carbon cycle tend to be poorly recognized
and understood. Still, the field must address these challenges. To do that, we must start
with four specific themes that link the ideas discussed throughout the book. These four
themes are (1) inertia and the consequence of entrained processes in the carbon, climate,
and human systems, (2) unaccounted-for vulnerabilities, especially the prospects for
large releases of carbon in a warming climate, (3) a series of gaps between reasonable
expectations for future approaches to managing carbon and the requirements for sta-
bilizing atmospheric CO2, and (4) the need for a common framework for assessing nat-
ural and managed aspects of the carbon cycle. Each of these themes is previewed here
and discussed extensively in the following chapters.

Inertia
Many aspects of the carbon-climate-human system change slowly, with a strong ten-
dency to remain on established trajectories. As a consequence, serious problems may be
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effectively entrained before they are generally recognized (Figure 1.2). Effective man-
agement may depend on early and consistent action, including actions with financial
costs. The political will to support these costs will require the strongest possible evidence
on the nature of the problems and the efficiency of the solutions. Insert Figure 1.2 here

The carbon-climate-human system includes processes that operate on a wide range
of timescales, including many that extend over decades to centuries. The slow compo-
nents have added tremendously to the challenge of quantifying human impacts on ocean
carbon (Sabine et al., Chapter 2, this volume) and ocean heat content (Levitus et al.
2000). They also prevent the ocean from quickly absorbing large amounts of anthro-
pogenic carbon (Sabine et al., Chapter 2) and underlie the very long lifetime of atmos-
pheric CO2.

Several new results highlight the critical role of inertia for the carbon cycle on land.
It is increasingly clear that a substantial fraction of the current terrestrial sink, perhaps
the majority, is a consequence of ecosystem recovery following past disturbances. Across
much of the temperate Northern Hemisphere, changes in forestry practices, agriculture,
and fire management have allowed forests to increase in biomass or area (Nabuurs,
Chapter 16, this volume). Evidence that much of the recent sink on land is a result of
land management has important implications for the future trajectory of the carbon
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Figure 1.2. Effects of inertia in the coupled carbon-climate-human system. If there are
delays associated with (1) assembling the evidence that climate has moved outside an
acceptable envelope, (2) negotiating agreements on strategy and participation, and (3)
developing new technologies to accomplish the strategies, then there will be additional
delays associated with internal dynamics of the land and ocean system. As a consequence,
the actual climate change may be far greater than that originally identified as acceptable.
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cycle. Beginning with Bacastow and Keeling (1973), most estimates of future carbon
sinks have assumed that recent sinks were a consequence of CO2 fertilization of plant
growth and that past responses could be projected into the future with a CO2-sensitiv-
ity coefficient or beta factor (Friedlingstein et al. 1995). To the extent that recent sinks
are caused by management rather than CO2 fertilization, past estimates of future sinks
from CO2 fertilization are likely to be too optimistic (Gruber et al., Chapter 3, this vol-
ume). Eventual saturation in sinks from management (Schimel et al. 2001) gives them
a very different trajectory from that of sinks from CO2 fertilization, especially those cal-
culated by models without nutrient limitation (Prentice 2001).

In the human system, inertia plays a number of critical roles. The dynamics of
development tend to concentrate future growth in carbon emissions in countries with
developing economies (Romero Lankao, Chapter 19, this volume). This historical iner-
tia, combined with potentially limited resources for carbon-efficient energy systems
(Sathaye, Chapter 22), creates pressure for massive future emissions growth. Slowly
changing institutions and incentive mechanisms in all countries (Lebel, Chapter 20)
tend to entrain emissions trajectories further.

Inertia is profoundly important in the energy system, especially in the slow pace for
introducing new technologies. The slow pace reflects not only the long time horizon for
research and development, but also the long period required to retire existing capital
stocks (Caldeira et al., Chapter 5). The long time horizon for bringing technologies to
maturity and retiring capital stocks is only part of the timeline for the non-emitting
energy system of the future, which also depends on the development of fundamentally
new technologies (Hoffert et al. 2002). The search for fundamentally new energy
sources cannot, however, constitute the entire strategy for action, because the entrained
damage may be unacceptably large before new technologies are ready (Figure 1.2). A
diverse portfolio of energy efficiency, new technologies, and carbon sequestration offers
the strongest prospects for stabilizing atmospheric CO2 (Caldeira et al., Chapter 5).

Vulnerability
A fundamental goal of the science of the carbon-climate-human system is to understand
and eventually reduce the Earth’s vulnerability to dangerous changes in climate. This
agenda requires that we understand the mechanisms that drive climate change, develop
strategies for minimizing the magnitude of the climate change that does occur, and cre-
ate approaches for coping with the climate change that cannot be avoided. Successful
pursuit of this agenda is simpler when the carbon-climate-human system generates neg-
ative feedbacks (that tend to suppress further climate change), and it is more compli-
cated when the system generates positive feedbacks (Figure 1.1). Positive feedbacks are
especially challenging if they occur suddenly, as threshold phenomena, or if they
involve coupled responses of the atmosphere, land, oceans, and human activities.

We are entering an era when we need not—and in fact must not—view the ques-
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tion of vulnerability from any single perspective. The carbon-climate-human system
generates climate change as an integrated system. Attempts to understand the integrated
system must take an integrated perspective. Mechanistic process models, the principal
tools for exploring the behavior of climate and the carbon cycle on land and in the
oceans, are increasingly competent to address questions about interactions among
major components of the system (Gruber et al., Chapter 3, this volume). Still, many of
the key interactions are only beginning to appear in models or are not yet represented.
For these interactions, we need a combination of dedicated research and other tools for
taking advantage of the available knowledge. In assessing the vulnerability of the car-
bon cycle to the possibility of large releases in the future, we combine results from mech-
anistic simulations with a broad range of other kinds of information.

Several new lines of information suggest that past assessments have underestimated
the vulnerability of key aspects of the carbon-climate-human system. Several of these
concern climate-carbon feedbacks. Simulations with coupled climate-carbon models
demonstrate a previously undocumented positive feedback between warming and the
terrestrial carbon cycle, in which CO2 releases stimulated by warming accelerate warm-
ing and further CO2 releases (Friedlingstein, Chapter 10, this volume). The experiments
to date are too limited to support an accurate quantification of this positive feedback,
but the range of results highlights the importance of further research. The behavior of
two models of comparable sophistication is so different that, with similar forcing, they
differ in atmospheric CO2 in 2100 by more than 200 parts per million (ppm).

The models that simulate the future carbon balance of land are still incomplete. At
least three mechanisms either not yet represented or represented in the models in a
rudimentary way have the potential to amplify positive feedbacks to climate warming
(Gruber et al., Chapter 3). The first of these is the respiration of carbon currently locked
in permanently frozen soils. General Circulation Model (GCM) simulations indicate
that much of the permafrost in the Northern Hemisphere may disappear over the next
century. Because these soils contain large quantities of carbon (Michaelson et al. 1996),
and because much of this carbon is relatively labile once thawed, potential releases over
a century could be in the range of 100 PgC (Gruber et al., Chapter 3). Wetland soils
are similar, containing vast quantities of carbon, which is subject to rapid decomposi-
tion when dry and aerated. Drying can allow wildfires, such as those that released an
estimated additional 0.8 to 3.7 PgC from tropical fires during the 1997–1998 El Niño
(Langenfelds et al. 2002). Drying wetland soils might result in a decrease in methane
emissions, along with an increase in CO2 emissions, requiring a careful analysis of
overall greenhouse forcing (Manne and Richels, Chapter 25). A third aspect of the ter-
restrial biosphere with the potential for massive carbon releases in the future is large-scale
wildfire, especially in tropical and boreal forest ecosystems (Gruber et al., Chapter 3).
Climate changes in both kinds of ecosystems could push large areas past a threshold
where they are dry enough to support large wildfires (Nepstad et al. 2001), and a fun-
damental change in the fire regime could effectively eliminate large areas of forest. None
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of these three mechanisms is thoroughly addressed in current ecosystem or carbon-cycle
models. As a consequence, it is not yet feasible to estimate either the probability of the
changes or the likely carbon emissions. Still, ignoring the potential for these large
releases is not responsible, and the vulnerability of the climate system to them should
be explored.

Vulnerability of ecosystems used for carbon management highlights other aspects of
the need for an integrated perspective on the carbon-climate-human system. Ocean fer-
tilization and deep disposal both create altered conditions for ocean ecosystems
(Bakker, Chapter 26; Brewer, Chapter 27). To date, the consequences of these alterations
are poorly known. Ecosystem alteration is also an issue for terrestrial sequestration
through afforestation. Especially where afforestation involves plantations of a single tree
species or non-native species, it is important to assess how any extra vulnerability to loss
of ecosystem services alters the overall balance of costs and benefits (Raupach et al.,
Chapter 6, this volume). 

The Energy Gap
Humans interact with nearly every aspect of the carbon cycle. In the past, trajectories
of emissions and land use change unfolded with little or no reference to their impacts
on climate. Now much of the world is ready to make carbon management a priority.
The United Nations Framework Convention on Climate Change and its Kyoto Proto-
col establish initial steps toward stabilizing the climate (Sanz et al., Chapter 24, this vol-
ume). In the future, however, much more will need to be done, especially if CO2 con-
centrations are to be stabilized at a concentration of 750 ppm or lower. The basic
problem is that world energy demand continues to grow rapidly. With a business-as-
usual strategy, global carbon emissions could exceed 20 PgC per year (y-1) (about three
times current levels) by 2050 (Nakicenovic, Chapter 11).

Many technologies present options for decreasing emissions or sequestering carbon.
Unfortunately, no single technology appears to have the potential to solve the energy
problem comprehensively within the next few decades (Caldeira et al., Chapter 5, this
volume). Indeed, meeting world energy demands without carbon emissions may
require fundamental breakthroughs in energy technology (Hoffert et al. 2002). Even
with future breakthroughs, the best options for managing the future energy system are
very likely to involve a portfolio of approaches, including strategies for extracting extra
energy from carbon-based fuels, technologies for generating energy without carbon
emissions, and approaches to increasing sequestration on the land and in the oceans
(Caldeira et al., Chapter 5).

Increases in energy efficiency (measured as energy per unit of carbon emissions) typ-
ically accompany economic development, and it is reasonable to assume that efficiency
increases will continue in the future (Sathaye, Chapter 22). Even with aggressive
assumptions about increases in efficiency, reasonable scenarios for the future may result
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in CO2 levels well above widely discussed stabilization targets (i.e., 450, 550, and 750
ppm CO2). This is the case for many of the scenarios explored in the IPCC Special
Report on Emission Scenarios (Nakicenovic, Chapter 11), leading to a gap between
emissions consistent with reasonable advances in energy technology and those required
to reach a particular stabilization target. This gap needs to be filled through active poli-
cies and could include incentives for new technologies, sequestration, or decreased
energy consumption (Edmonds et al., Chapter 4).

The juxtaposition of the portfolio of future options for energy and carbon manage-
ment with the gap between many economic scenarios and CO2 stabilization creates a
problem. A priori, it is not possible to identify a set of options available for filling the
energy gap because most or even all of the available options may have already been used
in the increased energy efficiency that occurs as a natural part of technological advance
(Figure 1.3). Because there is no way to predict the mechanisms that will appear
endogenously, there is no simple way to identify an additional set that should be the tar-
gets for policy intervention. From a carbon management perspective, the efficiency

1. The Global Carbon Cycle | 9

Figure 1.3. The energy gap, showing the growing difference between the emissions pro-
jected in a widely used scenario (IS92a) and the emissions required to stabilize atmos-
pheric CO2 at 550 ppm (with the WRE 550 scenario [Edmonds et al., Chapter 4, this
volume]). This energy gap is the target for climate policy. Also shown is the emissions
trajectory for IS92a in the absence of endogenous technology improvements. The very
large improvements can be expected based on past experience, but they may involve many
of the options that are also candidates for closing the energy gap between the emissions
scenario (IS92a) and the stabilization scenario (550 ppm constraint). Redrawn from
Edmonds et al., Chapter 4.
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increases that occur spontaneously make some aspects of the carbon problem simpler,
and they make some aspects more difficult to solve. On the one hand, if economic pres-
sures consistently lead to efficiency increases, additional policy tools may not be neces-
sary, at least for some of the efficiency increases. On the other hand, if the efficiency
increases in the economic scenarios consume most of the options for carbon manage-
ment, the costs of developing options for closing the gap may be very high (Edmonds
et al., Chapter 4) or they may entail unacceptable trade-offs with other sectors (Raupach
et al., Chapter 6). Insert Figure 1.3 here

Toward a Common Framework
Some of the greatest challenges in managing the carbon-climate-human system for a sus-
tainable future involve establishing appropriate criteria for comparing options. Ulti-
mately, we need a framework where any option can be explored in terms of its impli-
cations for the climate system, its implications for energy, and its other impacts on
ecosystems and humans (Raupach et al., Chapter 6). Many of the challenges involve
processes that operate on different timescales. The sensitivity to time frame of the rel-
ative value of mitigating CO2 and CH4 emissions illustrates the problem. On a
timescale of a few years, decreasing CH4 emissions has a large impact on climate, but
this impact decreases over decades as a consequence of the relatively short atmospheric
life of CH4 (Manne and Richels, Chapter 25). Carbon management through refor-
estation and afforestation potentially yields benefits over many decades, but these ben-
efits disappear or reverse when forests stop growing, are harvested, or are disturbed. A
decision about using a plot for a forest plantation versus a photovoltaic array needs to
be based on a common framework for assessing the options, a framework that includes
not only time frames, but also ancillary costs and benefits (Edmonds, Chapter 23).

All of the decisions that underlie the transition to a sustainable energy future require
placing the decision in a larger context (Raupach et al., Chapter 6). Institutions, cul-
ture, economic resources, and perspectives on intergenerational equity all shape oppor-
tunities for and constraints on managing the carbon cycle.

Meeting Future Challenges
Each of the themes that emerged from the RAP on the carbon cycle tends to make the
climate problem more difficult to solve. The role of land management in current sinks
suggests that future sinks from CO2 fertilization will be smaller than past estimates. Iner-
tia in the human system extends the timeline for developing and implementing solu-
tions. Land ecosystems appear to be vulnerable to large releases of carbon, including
releases from several mechanisms that have been absent from or incomplete in the
models used for past assessments. Strategies for increased energy efficiency, carbon
sequestration, and carbon-free energy are abundant, but no single technology is likely
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to solve the climate problem completely in the next few decades. A portfolio approach
is the best option, but many of the elements of the portfolio are implicitly present in
economic scenarios that fail to meet stabilization targets. Finally, each of the strategies
for increased energy efficiency, carbon sequestration, or carbon-free energy involves a
series of ancillary costs and benefits. In the broad context of societal issues, the ancil-
lary effects may dominate the discussion of implementation.

How should an appreciation of the new dimensions of the climate problem change
strategies for finding and implementing solutions? The most obvious conclusion is
that the problem of climate change warrants more attention and higher priority. It also
warrants a broader discussion of strategies, a discussion that should move beyond land,
atmosphere, oceans, technology, and economics to include serious consideration of
equity, consumption, and population.
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