History of ocean pCO_2 intercomparison

- 1994 Scripps
 - A.Dickson and CO₂
 panel
 - Laboratory intercomparison with small seawater pool
 - Successful but water supply problem

- 1998 R/V Meteor
 - A.Koertzinger
 - Onboard
 intercomparison using
 natural surface
 seawater
 - Very successful but difficulties from natural variation of pCO₂ and on board laboratory share

International ocean pCO₂ intercomparison using indoor seawater pool

- SCOR/IOC CO₂ Panel Facility activity – Floati
 - (Chair, D. Wallace)
- Merit of large indoor seawater pool
 - small T change
 - large water supply capacity
 - manageable pCO₂ with
 HCl and NaOH

- Floating in the pool for buoy type systems
- Pool side deck
 installation for on
 board underway
 systems
- calibrated standard gas supply (0, 270, 330, 390, 450ppm)
- 100, 200V 50Hz AC
 power

International ocean pCO₂ intercomparison using indoor seawater pool

- Date
 - March 10 (Mon)–14 (Fri), 2003
- Post experiment workshop
 - around October 7, 2003

- Sponsorship
 - Ministry of
 Environment, Japan
 - National Institute for Environmental Studies (NIES)
- Location
 - Hazaki, Japan
 - 44 km east of Tokyo/Narita Airport

International ocean pCO₂ intercomparison using indoor seawater pool

- Target
 - critical comparison at 0.3 µatm level in ideal indoor laboratory condition
- How to do?
 - keep steady pool pCO₂
 (ref. 1998 result)
 - critical T comparison of each equilibrator by calibrated T sensor

- Study for error causes in pCO₂ equilibrators
 - Pool pCO₂ can be changed by HCl/NaOH. Test at 250, 350, and 450 µatm can identify error relating to pCO₂
 - Pool T change (15 and 20 degree C) can identify error relating to T.

Indoor Seawater Pool in National Research Institute of Fishery Engineering

see web page

how to access http://ss.nrife.affrc.go.jp/index_e.html pool facility http://ss.nrife.affrc.go.jp/plant/gyogun/gyogun_e.html

Seawater pool of 170t! stable temperature and pCO₂ manageable pCO₂ by HCl/NaOH

Pool building with wet and dry laboratories

dimension = 15 x 8 m, 2 m in depth
temperature control by heater
uniform temperature by circulation

Photo of Japanese Domestic Intercalibration in 1998

pCO₂ Inter-comparison setting

Pool side deck T sensors Equilibrators Thermosalinographs Thermosalinographs Floating pCO₂ systems

•We will prepare the best set up for inter-comparison after the experience from the 1998 Japanese domestic inter-comparison.

•Standard gas (0, 270, 330, 390, 450 ppm CO_2 in air) supply lines to all the p CO_2 system will be installed.

•Main water line of 300 L/min will be installed on the deck.

•Two Thermosalinograph are installed at the upper and lower stream of the water line to ensure no temperature difference.

•Calibrated temperature sensors (0.02 degree C accuracy) will be supplied to all the equilibrators to ensure 0.3 μ atm resolution in pCO₂ comparison.

Result of Japanese Intercomparison in 1998

Bubbling equilibrator with low bias

Planned participants

- On board system
- US

- 2

• Europe

- 2

• Korea

- 1

- Japan
 - Tandem (NIES)
 - Shower head

- Drifter/Mooring system

 CARIOCA
 MDADI
 - MBARI