## Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models

#### Nicolas Gruber

Institute of Geophysics and Planetary Physics & Department of Atmospheric Sciences, University of California, Los Angeles

#### Ackowledgements

Manuel Gloor <sup>1</sup>, J. L. Sarmiento <sup>2</sup>, C. Sabine <sup>3</sup>, R. F. Feely <sup>4</sup>, J. C. Orr <sup>5</sup> and the OCMIP members

- (1) Max Planck Institute for Biogeochemistry, Jena, Germany
- (2) Program in Oceanic and Atmospheric Sciences, Princeton University
- (3) JISAO, University of Washington, Seattle
- (4) Pacific Marine Environmental Laboratory, Seattle
- (5) Lab. des Sciences du Climat de l'Environment, Gif-sur-Yvette, France

## Outline

- 1. Introduction: A short historical overview
- 2. Observational approaches
- 3. Forward Modeling
- 4. Inverse Modeling
- 5. Regionalization
- 6. Summary and Conclusion

## INTERHEMISPHERIC GRADIENT OF



## Interhemispheric ocean $CO_2$ transport

[Keeling et al., 1989]

# PREINDUSTRIAL INTERHEMISPHERIC CO<sub>2</sub> GRADIENT



adapted and updated from Keeling et al. (1989)

## TAKAHASHI ET AL. (1999) TANS ET AL. (1990)





#### OBSERVED AND PREDICTED ATMOSPHERIC CO2



Tans et al. (1990)

- a) fit to data
- b) predicted CO2 concentration with fossil fuel emission, sesonal vegetation tropical deforestation, and ocean flux computed using LM gas transfer coefficient
- c) as b, except for ocean flux computed using Tans et al. gas transfer coefficient
- d) as b, except for ocean flux computed using previous estimates

Annual CO2 Flux (mol/m2/yr)















## OCMIP-1: CO<sub>2</sub> FLUXES AND OCEAN TRANSPORT



Sarmiento et al. (2000)

## OCMIP-2: OCEAN CO<sub>2</sub> TRANSPORTS AND ATM. RESPONSE



J. Orr and OCMIP-2 (pers.comm)

# OCMIP-2: OCEAN CO<sub>2</sub> TRANSPORT VERSUS ATMOSPHERIC GRADIENT



## WOCE/JGOFS CO<sub>2</sub> survey



### DISSOLVED INORGANIC CARBON (sDIC@35) [µmol/kg]



# What $\Delta C_{gas\ ex}$ can tell us about the air-sea gas exchange of $CO_2$

• Definition of  $\Delta C_{gas\ ex}$ :

$$\Delta C_{\text{gas ex}} = \frac{S^o}{S} \left( DIC - r_{C:P}P - \frac{1}{2} (Alk + r_{N:P}P) \right) - \Delta C_{\text{ant}},$$

$$\Gamma(\Delta C_{\text{gas ex}}) = 0.$$

#### • Explanation and Interpretation :

- The normalization to constant Phosphate (P) and Alkalinity (Alk) removes the contribution of the soft-tissue and carbonate pumps.
- The remaining variability is due to the exchange of natural  $CO_2$  between the ocean and atmosphere as well as the uptake of anthropogenic  $CO_2$  ( $\Delta C_{ant}$ ).
- After removing  $\Delta C_{\rm ant}$  as well, we end up with a tracer just reflecting the air-sea exchange of natural (i.e. preindustrial)  $CO_2$ .

## GAS-EXCHANGE COMPONENT ( $\Delta C_{gas-ex}$ ) [ $\mu mol/kg$ ]



### ANTHROPOGENIC CO<sub>2</sub> [µmol/kg]



#### Principle of Oceanic Inversion

- $\bullet$  The ocean surface is partitioned into n regions.
- Basis functions
  - $-\ Steady\text{-}State\ Inversion$

In a OGCM, constant fluxes of dye tracers  $(\Phi)$  are imposed in each of the n regions, and the model is run until the spatial patterns of the dyes attain a quasi steady-state.

- Transient-tracer Inversion

Analogous to the *steady-state* inversion except that the dye fluxes are time-varying, i.e. for  $CO_2$ ,

$$\vec{\Phi}(t) = \vec{\Phi}(t=0) * (pCO_2(t) - pCO_2(t=0))$$

• The model predictions of the dye concentrations are sampled at the observation stations and arranged as a vector  $\vec{\chi}_{\rm OGCM}$ . The model therefore provides us with a transport matrix  $A_{\rm OGCM}$  that relates the fluxes to the distribution,

$$\vec{\chi}_{\text{OGCM}} = A_{\text{OGCM}} \vec{\Phi}.$$

• Modeled distributions at the observations stations are substituted with observed ones and the matrix A is inverted to get an estimate of the surface fluxes  $(\vec{\Phi}_{\rm est})$ :

$$\vec{\Phi}_{\rm est} = A_{\rm OGCM}^{-1} \ \vec{\chi}_{\rm obs}.$$

#### The Models

- coarse resolution model: 3.75° meridionally, 4.5° zonally and 24 layers vertically
- seasonal forcing at the surface with observed wind-stress, [Heller-mann and Rosenstein, 1983] and heat and freshwater fluxes [DaSilva et al., 1994] with weak restoring towards observed temperature and salinity fields from Levitus et al. [1994].
- Sub-grid scale parameterization of eddies according to Gent and McWilliams [1990]
- KvLOW-AiLOW: Low vertical diffusivity everywhere; KvHISouth-AiLOW: Enhanced vertical diffusivity in the Southern Ocean.
- Surface ocean has been divided into 15 regions and unit fluxes have been applied for a total runtime of 3000 years. For the time-dependent inversion, the unit fluxes were scaled in time according to the evolution of the atmospheric CO<sub>2</sub> perturbation.

### OCEAN REGIONS AND NETWORK



WOCE/JGOFS/OACES SURVEY

#### Basis Functions: Color Tracer Distribution



## INVERSE AIR-SEA CO<sub>2</sub>-FLUXES



Anthropogenic CO<sub>2</sub> Flux: 1.8 PgC yr<sup>-1</sup>

Gloor et al. (submitted), Gruber et al. (in prep.)



Gloor et al. (submitted) Gruber et al. (in prep.)

#### PRE-INDUSTRIAL AIR-SEA FLUXES AND TRANSPORT



Transport across Equator: 0.4 PgC yr<sup>-1</sup> Transport vanishes at about 3°S

### **OCEAN INVERSION**



Gloor et al. (submitted) Gruber et al. (in prep.)

#### OCEAN INVERSION: ATMOSPHERIC RESPONSE



#### OCEAN INVERSION: IMPACT ON LAND FLUXES



Gruber et al. (in prep.)

## pCO<sub>2</sub> VARIABILITY NEAR MONTEREY BAY



Friederich et al. (in press) Chavez et al. (in prep.)

## Regional Ocean Modeling System (ROMS)



#### Summary and Outlook

- Forward and inversely based estimates of the pre-industrial and anthropogenic CO<sub>2</sub> fluxes show overall very similar patterns and magnitudes, which are generally similar to observationally based estimates.
- However, this agreement breaks down in the Southern Hemisphere. In particular, the inversely based estimates indicate a substantially smaller  $CO_2$  uptake in the subpolar regions than indicated by  $\Delta pCO_2$  based estimates. Atmospheric inversions tend to come to similar conclusions.
- OCMIP forward models and our inverse models find a southward CO<sub>2</sub> transport of the order of 0.4 Pg C yr<sup>-1</sup> across the equator. This is considerably smaller than has been proposed by *Keeling et al.* [1989], and *Broecker and Peng* [1992]. We nevertheless find an interhemispheric gradient in atmospheric CO<sub>2</sub>, but primarily driven by the within hemisphere asymmetry in the fluxes.
- We find that our inversely estimated CO<sub>2</sub> fluxes, when used as priors in an atmospheric CO<sub>2</sub> inversion instead of those by *Takahashi et al.* [1999], lead to a relatively small change in the northern hemisphere terrestrial fluxes, but large changes in the tropical and southern hemisphere land regions.

- Regional ocean modeling advances have made it possible to address also the highly variable CO<sub>2</sub> flux dynamics of the coastal ocean, which might be important for regional atmospheric CO<sub>2</sub> inversions.
- There is large potential in further exploring how inverse techniques can be used to fuse at the same time oceanic and atmospheric data with models.