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INTERHEMISPHERIC GRADIENT OF

                                         ATMOSPHERIC CO2

Fan et al. (1999)



Interhemispheric ocean CO2 transport

[Keeling et al., 1989]
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PREINDUSTRIAL INTERHEMISPHERIC 

                                            CO2 GRADIENT

-0.8 ppm at zero emission

adapted and updated from Keeling et al. (1989)
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OBSERVED AND PREDICTED ATMOSPHERIC CO2

Tans et al. (1990)

a) fit to data

b) predicted CO2 concentration with fossil fuel emission, sesonal vegetation

     tropical deforestation, and ocean flux computed using LM gas transfer coefficient

c) as b, except for ocean flux computed using Tans et al. gas transfer coefficient

d) as b, except for ocean flux computed using previous estimates 







OCMIP-1: CO2 FLUXES 

                   AND OCEAN TRANSPORT

Sarmiento et al. (2000)
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WOCE/JGOFS CO2 survey
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DISSOLVED INORGANIC CARBON (sDIC@35) [µmol/kg]
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What ∆Cgas ex can tell us about the air-sea gas

exchange of CO2

• Definition of ∆Cgas ex:

∆Cgas ex =
So

S

(

DIC − rC:PP −

1

2
(Alk + rN :PP )

)

− ∆Cant,

Γ(∆Cgas ex) = 0.

• Explanation and Interpretation :

– The normalization to constant Phosphate (P) and Alka-

linity (Alk) removes the contribution of the soft-tissue and

carbonate pumps.

– The remaining variability is due to the exchange of natural

CO2 between the ocean and atmosphere as well as the

uptake of anthropogenic CO2 (∆Cant).

– After removing ∆Cant as well, we end up with a tracer

just reflecting the air-sea exchange of natural (i.e. pre-

industrial) CO2.



GAS-EXCHANGE COMPONENT (∆Cgas-ex)  [µmol/kg]
�
ATLANTIC PACIFICSOUTHERN OC.



ANTHROPOGENIC CO2 [µmol/kg]
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Principle of Oceanic Inversion

• The ocean surface is partitioned into n regions.

• Basis functions

– Steady-State Inversion

In a OGCM, constant fluxes of dye tracers (Φ) are imposed

in each of the n regions, and the model is run until the

spatial patterns of the dyes attain a quasi steady-state.

– Transient-tracer Inversion

Analogous to the steady-state inversion except that the

dye fluxes are time-varying, i.e. for CO2,

~Φ(t) = ~Φ(t = 0) ∗ (pCO2(t) − pCO2(t = 0))

• The model predictions of the dye concentrations are sam-

pled at the observation stations and arranged as a vector

~χOGCM. The model therefore provides us with a transport

matrix AOGCM that relates the fluxes to the distribution,

~χOGCM = AOGCM
~Φ.

• Modeled distributions at the observations stations are substi-

tuted with observed ones and the matrix A is inverted to get

an estimate of the surface fluxes (~Φest) :

~Φest = A−1
OGCM ~χobs.



The Models

• coarse resolution model: 3.75◦ meridionally, 4.5◦ zonally and

24 layers vertically

• seasonal forcing at the surface with observed wind-stress, [Heller-

mann and Rosenstein, 1983] and heat and freshwater fluxes

[DaSilva et al., 1994] with weak restoring towards observed

temperature and salinity fields from Levitus et al. [1994].

• Sub-grid scale parameterization of eddies according to Gent

and McWilliams [1990]

• KvLOW-AiLOW: Low vertical diffusivity everywhere; KvHISouth-

AiLOW: Enhanced vertical diffusivity in the Southern Ocean.

• Surface ocean has been divided into 15 regions and unit fluxes

have been applied for a total runtime of 3000 years. For the

time-dependent inversion, the unit fluxes were scaled in time

according to the evolution of the atmospheric CO2 perturba-

tion.
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WOCE/JGOFS/OACES SURVEY
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Basis Functions: Color Tracer Distribution
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Contemporary CO2 Fluxes [Pg C/yr]
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OCEAN INVERSION: ATMOSPHERIC RESPONSE

Contemporary Atmospheric CO2
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Regional Ocean Modeling System (ROMS)

Gruber et al. (in prep.)



Summary and Outlook

• Forward and inversely based estimates of the pre-industrial

and anthropogenic CO2 fluxes show overall very similar pat-

terns and magnitudes, which are generally similar to observa-

tionally based estimates.

• However, this agreement breaks down in the Southern Hemi-

sphere. In particular, the inversely based estimates indicate a

substantially smaller CO2 uptake in the subpolar regions than

indicated by ∆pCO2 based estimates. Atmospheric inversions

tend to come to similar conclusions.

• OCMIP forward models and our inverse models find a south-

ward CO2 transport of the order of 0.4 Pg C yr−1 across the

equator. This is considerably smaller than has been proposed

by Keeling et al. [1989], and Broecker and Peng [1992]. We

nevertheless find an interhemispheric gradient in atmospheric

CO2, but primarily driven by the within hemisphere asymme-

try in the fluxes.

• We find that our inversely estimated CO2 fluxes, when used

as priors in an atmospheric CO2 inversion instead of those by

Takahashi et al. [1999], lead to a relatively small change in

the northern hemisphere terrestrial fluxes, but large changes

in the tropical and southern hemisphere land regions.



• Regional ocean modeling advances have made it possible to

address also the highly variable CO2 flux dynamics of the

coastal ocean, which might be important for regional atmo-

spheric CO2 inversions.

• There is large potential in further exploring how inverse tech-

niques can be used to fuse at the same time oceanic and at-

mospheric data with models.


