

Global Carbon Budget 2017

Published on 13 November 2017 PowerPoint version 1.1 (released 15 January 2018)

The work presented here has been possible thanks to the enormous observational and modelling efforts of the institutions and networks below

Atmospheric CO₂ datasets NOAA/ESRL (Dlugokencky and Tans 2017) Scripps (Keeling et al. 1976)

Fossil Fuels and Industry

CDIAC (Boden et al. 2017) USGS, 2017 UNFCCC, 2017 BP, 2017

Consumption Emissions

Peters et al. 2011 GTAP (Narayanan et al. 2015)

Land-Use Change

Houghton and Nassikas 2017 Hansis et al. 2015 GFED4 (van der Werf et al. 2017) FAO-FRA and FAOSTAT HYDE (Klein Goldewijk et al. 2017) LUH2 (Hurtt et al. 2011)

Atmospheric inversions

CarbonTracker Europe (van der Laan-Luijkx et al. 2017) Jena CarboScope (Rödenbeck et al. 2003) CAMS (Chevallier et al. 2005)

Land models

CABLE | CLASS-CTEM | CLM4.5(BGC) | DLEM | ISAM | JSBACH | JULES | LPJ-GUESS | LPJ | LPX-Bern | OCN | ORCHIDEE | ORCHIDEE-MICT | SDGVM | VISIT CRU (Harris et al. 2014)

Ocean models

CCSM-BEC | CSIRO | MITgem-REcoM2 | MPIOM-HAMOCC | MICOM-HAMOCC | NEMO-PISCES (CNRM) | NEMO-PISCES(IPSL) | NEMO-PlankTOM5 | NorESM-OC

pCO₂-based ocean flux products

Jena CarboScope (Rödenbeck et al. 2014) Landschützer et al. 2016 SOCATv5 (Bakker et al. 2016)

Full references provided in Le Quéré et al 2017

C Le Quéré UK | RM Andrew Norway | GP Peters Norway | JG Canadell Australia | P Friedlingstein UK | R Jackson USA | S Sitch UK | JI Korsbakken Norway | J Pongratz Germany | AC Manning UK

Thomas A. Boden USA | Pieter P. Tans USA | Oliver D. Andrews UK | Vivek K. Arora Canada | Dorothee C. E. Bakker UK | Leticia Barbero USA | Meike Becker Norway | Richard A. Betts UK | Laurent Bopp France | Frédéric Chevallier France | Louise P. Chini USA | Philippe Ciais France | Catherine E. Cosca USA | Jessica Cross USA | Kim Currie New Zealand | Thomas Gasser Austria | Ian Harris UK | Judith Hauck Germany | Vanessa Haverd Australia | Richard A. Houghton USA | Christopher W. Hunt USA | George Hurtt USA | Tatiana Ilyina Germany | Atul K. Jain USA | Etsushi Kato Japan | Markus Kautz Germany | Ralph F. Keeling USA | Kees Klein Goldewijk The Netherlands | Arne Körtzinger Germany | Peter Landschützer Germany | Nathalie Lefèvre France | Andrew Lenton Australia | Sebastian Lienert Switzerland | Ivan Lima USA | Danica Lombardozzi USA | Galen McKinley USA | Nicolas Metzl France | Frank Millero USA | Pedro M. S. Monteiro South Africa | David R. Munro USA | Julia E. M. S. Nabel Germany | Shin-ichiro Nakaoka Japan | Yukihiro Nojiri Japan | X. Antonio Padín Spain | Anna Peregon France | Benjamin Pfeil Norway | Denis Pierrot USA | Benjamin Poulter USA | Gregor Rehder Germany | Janet Reimer USA | Christian Rödenbeck Germany | Joyashree Roy India | Jörg Schwinger Norway | Roland Séférian France | Ingunn Skjelvan Norway | Benjamin D. Stocker Spain | Hanqin Tian USA | Bronte Tilbrook Australia | Ingrid T. van der Laan-Luijkx The Netherlands | Guido R. van der Werf The Netherlands | Libo Wu China | Steven van Heuven The Netherlands | Nicolas Viovy France | Nicolas Vuichard France | Anthony P. Walker USA | Andrew J. Watson UK | Andrew J. Wiltshire UK | Sönke Zaehle Germany | Dan Zhu France

Atlas Team Members at LSCE, France P Ciais | A Peregon | P Peylin | P Brockmann | V Maigné | P Evano | C Nangini

Communications Team O Gaffney | A Minns | A Scrutton

GLOBAL

CARBON

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-123 Manuscript under review for journal Earth Syst. Sci. Data This is just a preview and not the published paper. © Author(s) 2017. CC BY 4.0 License.

Global Carbon Budget 2017

Corinne Le Quéré¹, Robbie M. Andrew², Pierre Friedlingstein³, Stephen Sitch⁴, Julia Pongratz⁵, Andrew C. Manning⁶, Jan Ivar Korsbakken², Glen P. Peters², Josep G. Canadell⁷, Robert B. Jackson⁸, Thomas A. Boden⁹ Pieter P. Tans¹⁰, Oliver D. Andrews¹, Vivek K. Arora¹¹, Dorothee C. E. Bakker⁶, Leticia Barbero^{12,13}, Meike Becker^{14,15}, Richard A. Betts^{16,4}, Laurent Bopp¹⁷, Frédéric Chevallier¹⁸, Louise P. Chini¹⁹, Philippe Ciais¹⁸, Catherine E. Cosca²⁰, Jessica Cross²⁰, Kim Currie²¹, Thomas Gasser²², Ian Harris²³, Judith Hauck²⁴, Vanessa Haverd²⁵, Richard A. Houghton²⁶, Christopher W. Hunt²⁷, George Hurtt¹⁹, Tatiana Ilyina⁵, Atul K. Jain²⁸, Etsushi Kato²⁹, Markus Kautz³⁰, Ralph F. Keeling³¹, Kees Klein Goldewijk³², Arne Körtzinger³³, Peter

Landschützer⁵, Nathalie Lefèvre³⁴, Andrew Lenton^{35,36}, Sebastian Lienert^{37,38}, Ivan Lima³⁹, Danica Lombardozzi⁴⁰, Nicolas Metzl³⁴, Frank Millero⁴¹, Pedro M. S. Monteiro⁴², David R. Munro⁴³, Julia E. M. S. Nabel⁵, Shin-ichiro Nakaoka⁴⁴, Yukihiro Nojiri⁴⁴, X. Antonio Padín⁴⁵, Anna Peregon¹⁸, Benjamin Pfeil^{14,15}, Denis Pierrot^{12,13}, Benjamin Poulter^{46,47}, Gregor Rehder⁴⁸, Janet Reimer⁴⁹, Christian Rödenbeck⁵⁰, Jörg Schwinger⁵¹, Roland Séférian⁵², Ingunn Skjelvan⁵¹, Benjamin D. Stocker⁵³, Hangin Tian⁵⁴, Bronte Tilbrook^{35,36}, Ingrid T. van der Laan-Luijkx⁵⁵, Guido R. van der Werf⁵⁶, Steven van Heuven⁵⁷, Nicolas Viovy¹⁸, Nicolas Vuichard¹⁸, Anthony P. Walker⁵⁸, Andrew J. Watson⁴, Andrew J. Wiltshire¹⁶, Sönke Zaehle⁵⁰, Dan 7hu¹⁸

https://doi.org/10.5194/essdd-2017-123

comment

2000

2010 20

Towards real-time verification of CO₂ emissions

The Paris Agreement has increased the incentive to verify reported anthropogenic carbon dioxide emissions with independent Earth system observations. Reliable verification requires a step change in our understanding of carbon cycle variability

Glen P. Peters, Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Pierre Friedlingstein, Tatiana Ilvina, Robert B. Jackson, Fortunat Joos, Jan Ivar Korsbakken, Galen A. McKinley, Stephen Sitch and Pieter Tans

missions of CO2 from fossil fuels and industry did not change from 2014 to 2016, yet there was a record increase in CO2 concentration in the atmosphere This apparent inconsistency is explained by the response of the natural carbon cycle to the 2015-2016 El Niño event2, but it raises important questions about our ability to detect a sustained change in emissions from the atmospheric record. High-accuracy calibrated atmospheric measurements, diverse satellite data, and integrative modelling approaches could, and ultimately must, provide independent evidence of the effectiveness of collective action to address climate change. This verification will only be possible if we can fully filter out the background variability in atmospheric CO₂ concentrations driven by natural processes, a (0.2-3.8%) and in the rest of the world of 1.9% (0.3%-3.4%) (ref. 3). The increased - Total emission ~ 40 fossil fuel and industry emissions echnically bring an end to the three years of approximately constant emissions that persisted from 2014 to 2016. Land-use change emissions in 2017 should be similar to their 2016 level⁵, based on fire observations using satellite data. When combining CO2 emissions from fossil fuels, industry, and land-use change, we project 2017 global emissions to be 41.5 + 4.4 billion tonnes of CO2, similar to 2015 levels. Even though the projected 2017 emissions match those of the Fig. 1 | Trends in CO. emissions and atmospheric CO, concentrations. Even though CO, record year in 2015, they are not expected

to increase atmospheric CO, concentration ions from fossil fuel and industry, and total as much as in 2015 because of reinvigorated emissions including land-use change, have been relatively flat from 2014 to 2016, atmospheric carbon uptake in natural reservoirs after the 2015-2016 El Niño event (Fig. 1). concentrations saw a record increase in 2015 and

https://doi.org/10.1038/s41558-017-0013-9

Current	EDITORIAL				
	Warning signs for stabilizing global CO_2 emissions				
RECEIVED 18 October 2017 ACCEPTED FOR PUBLICATION 27 October 2017 PUBLISHED	R B Jackson ¹ ©, C Le Quére ² , R M Andrew ³ ©, J G Canadell ⁴ , G P Peters ³ ©, J Roy ⁵ and L Wu ⁶ ¹ Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, 9405-2210 CA, United States of America ² Tyndall Center for Climate Change Research, University of East Anglia, United Kingdom ³ CICRRO Center for International Climate Research, P.O. Box 1129 Bindern, 0318 Oslo, Norvay ⁴ Global Carbon Project, CISRO, Occuss and Atmonghere, Canberra, ACT 2601, Australia ⁵ Department of Economics, Iadarypar University, Kollata, India ⁶ School of Economics, Isdary University, Pople's Republic of China ⁷ Author to Mon any correspondence should be addressed. E-mail: rob.jackson@stanford.edu				
DD MM 2017 Original content from this work may be used under the terms of the Creative Commons					
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.	Abstract Carbon dioxide (CO ₂) emissions from fossil fuels and industry comprise \sim 90% of all CO ₂ emissic from human activities. For the last three years, such emissions were stable, despite continuing gro in the global economy, Many positive trends contributed to this unique hiatus, including reduced coal use in China and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon renevables such as wind and solar, However, the temporary hiatus appears to have ended in 2017.				

e (CO2) emissions from fossil fuels and industry comprise ~90% of all CO2 emissions ctivities. For the last three years, such emissions were stable, despite continuing growth conomy, Many positive trends contributed to this unique hiatus, including reduced na and elsewhere, continuing gains in energy efficiency, and a boom in low-carbon renewables such as wind and solar. However, the temporary hiatus appears to have ended in 2017. For 2017, we project emissions growth of 2.0% (range: 0.8%-2.9%) from 2016 levels (leap-year adjusted), reaching a record 36.8 ± 1.8 Gt CO2. Economic projections suggest further emissions growth in 2018 is likely. Time is running out on our ability to keep global average temperature increases below 2 °C and, even more immediately, anything close to 1.5 °C.

Data Access and Additional Resources

GCP Website

GLOBAL

CARBON PROJECT

Global Carbon Atlas

More information, data sources and data files: http://www.globalcarbonproject.org/carbonbudget Contact: c.lequere@uea.ac.uk More information, data sources and data files: www.globalcarbonatlas.org

(co-funded in part by BNP Paribas Foundation) Contact: philippe.ciais@lsce.ipsl.fr

All the data is shown in billion tonnes CO₂ (GtCO₂)

1 Gigatonne (Gt) = 1 billion tonnes = 1×10^{15} g = 1 Petagram (Pg)

1 kg carbon (C) = 3.664 kg carbon dioxide (CO₂)

1 GtC = 3.664 billion tonnes CO_2 = 3.664 GtCO₂

(Figures in units of GtC and GtCO₂ are available from <u>http://globalcarbonbudget.org/carbonbudget</u>)

Most figures in this presentation are available for download as PDF or PNG from <u>tinyurl.com/GCB17figs</u> along with the data required to produce them.

Disclaimer

The Global Carbon Budget and the information presented here are intended for those interested in learning about the carbon cycle, and how human activities are changing it. The information contained herein is provided as a public service, with the understanding that the Global Carbon Project team make no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability of the information. Anthropogenic perturbation of the global carbon cycle

Perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2007–2016 (GtCO₂/yr)

GLOBAL

CARBON

The budget imbalance is the difference between the estimated emissions and sinks. Source: <u>CDIAC</u>; <u>NOAA-ESRL</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Fossil Fuel and Industry Emissions

GLOBAL CARBON Emissions from fossil fuel use and industry

Global emissions from fossil fuel and industry: $36.2 \pm 2 \text{ GtCO}_2$ in 2016, 62% over 1990

• Projection for 2017: 36.8 ± 2 GtCO₂, 2.0% higher than 2016

Estimates for 2015 and 2016 are preliminary. Growth rate is adjusted for the leap year in 2016. Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017

The top four emitters in 2016 covered 59% of global emissions China (28%), United States (15%), EU28 (10%), India (7%)

Statistical differences between the global estimates and sum of national totals are 0.6% of global emissions. Source: <u>CDIAC</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u> GLOBAL CARBON Emissions Projections for 2017

Global emissions from fossil fuels and industry are projected to rise by 2.0% in 2017 The global projection has a large uncertainty, ranging from +0.8% to +3.0%

Source: CDIAC; Jackson et al 2017; Le Quéré et al 2017; Global Carbon Budget 2017

Countries have a broad range of per capita emissions reflecting their national circumstances

Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017

Emissions per unit economic output (emissions intensities) generally decline over time China's intensity is declining rapidly, but is still much higher than the world average

GDP is measured in purchasing power parity (PPP) terms in 2010 US dollars.

Source: CDIAC; IEA 2016 GDP to 2014, IMF 2017 growth rates to 2016; Le Quéré et al 2017; Global Carbon Budget 2017

Emissions by country from 2000 to 2016, with growth rates indicated for the more recent period of 2011 to 2016

Alternative rankings of countries

GLOBAL

CARBON

Depending on perspective, the significance of individual countries changes. Emissions from fossil fuels and industry.

GDP: Gross Domestic Product in Market Exchange Rates (MER) and Purchasing Power Parity (PPP) Source: <u>CDIAC</u>; <u>United Nations</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Emissions in the US, Russia and Brazil declined in 2016 Emissions in India and all other countries combined increased

Figure shows the top four countries contributing to emissions changes in 2016 Source: <u>CDIAC</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Emissions from OECD countries are about the same as in 1990 Emissions from non-OECD countries have increased rapidly in the last decade

Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017

GLOBAL CARBON PROJECT Historical cumulative emissions by country

Cumulative emissions from fossil-fuel and industry were distributed (1870–2016): USA 26%, EU28 22%, China 13%, Russia 7%, Japan 4% and India 3%

'All others' includes all other countries along with bunker fuels and statistical differences

Source: CDIAC; Le Quéré et al 2017; Global Carbon Budget 2017

Cumulative emissions from fossil-fuel and industry (1870–2016) North America and Europe responsible for most cumulative emissions, but Asia growing fast

The figure excludes bunker fuels and statistical differences Source: <u>CDIAC</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Share of global emissions in 2016: coal (40%), oil (34%), gas (19%), cement (6%), flaring (1%, not shown)

GLOBAL CARBON Emissions by category

Emissions by category from 2000 to 2016, with growth rates indicated for the more recent period of 2011 to 2016

lobal Carbon Project

Energy consumption by energy type

Energy consumption by fuel source from 2000 to 2016, with growth rates indicated for the more recent period of 2011 to 2016

alobal Carbon Project

GLOBAL

CARBON PROJECT

Source: BP 2017; Jackson et al 2017; Global Carbon Budget 2017

The biggest changes in emissions were from a decline in coal and an increase in oil

Carbon intensity of economic activity

GLOBAL

CARBON

Global emissions growth has generally recovered quickly from previous financial crises It is unclear if the recent slowdown in global emissions is related to the Global Financial Crisis

Economic activity is measured in purchasing power parity (PPP) terms in 2010 US dollars. Source: <u>CDIAC</u>; <u>Peters et al 2012</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

The 10 largest economies have a wide range of emissions intensity of economic production

Emission intensity: CO₂ emissions from fossil fuel and industry divided by Gross Domestic Product Source: <u>Global Carbon Budget 2017</u>

New generation of emissions scenarios

GLOBAL

CARBON

In the lead up to the IPCC's Sixth Assessment Report new scenarios have been developed to more systematically explore key uncertainties in future socioeconomic developments

Five Shared Socioeconomic Pathways (SSPs) have been developed to explore challenges to adaptation and mitigation. Shared Policy Assumptions (SPAs) are used to achieve target forcing levels (W/m²). Marker Scenarios are indicated. Source: <u>Riahi et al. 2016</u>; <u>IIASA SSP Database</u>; <u>Global Carbon Budget 2017</u>

New generation of emissions scenarios

GLOBAL

CARBON

In the lead up to the IPCC's Sixth Assessment Report new scenarios have been developed to more systematically explore key uncertainties in future socioeconomic developments

Five Shared Socioeconomic Pathways (SSPs) have been developed to explore challenges to adaptation and mitigation. Shared Policy Assumptions (SPAs) are used to achieve target forcing levels (W/m²). Marker Scenarios are indicated. Source: <u>Riahi et al. 2016</u>; <u>IIASA SSP Database</u>; <u>Global Carbon Budget 2017</u> GLOBAL CARBON Pathways that avoid 2°C of warming

According to the Shared Socioeconomic Pathways (SSP) that avoid 2°C of warming, global CO₂ emissions need to decline rapidly and cross zero emissions after 2050

Source: Riahi et al. 2016; IIASA SSP Database; Global Carbon Budget 2017

In recent years, CO₂ emissions have been almost flat despite continued economic growth

Source: Jackson et al 2017; Global Carbon Budget 2017

GLOBAL CARBON Kaya decomposition

The Kaya decomposition demonstrates the recent relative decoupling of economic growth from CO₂ emissions, driven by improved energy intensity

GWP: Gross World Product (economic activity), FFI: Fossil Fuel and Industry, Energy is Primary Energy from BP statistics using the substitution accounting method Source: Jackson et al 2017; Global Carbon Budget 2017

The 10 most populous countries span a wide range of development and emissions per person

Emission per capita: CO₂ emissions from fossil fuel and industry divided by population Source: <u>Global Carbon Budget 2017</u>

	Emissions 2016				
Decien /Country	Per capita	Total		Growth 2015-16	
Region/Country	tCO ₂ per person	GtCO ₂	%	GtCO,	%
Global (with bunkers)	4.8	36.18	100	0.163	0.0
	OECD Countries				
OECD	9.8	12.56	34.7	-0.110	-1.1
USA	16.5	5.31	14.7	-0.100	-2.1
OECD Europe	7.0	3.42	9.5	0.000	-0.3
Japan	9.5	1.21	3.3	-0.016	-1.6
South Korea	11.7	0.60	1.6	0.003	0.3
Canada	15.5	0.56	1.6	-0.005	-1.2
	Non-OECD Countries				
Non-OECD	3.6	22.25	61.5	0.220	0.7
China	7.2	10.15	28.1	0.000	-0.3
India	1.8	2.43	6.7	0.110	4.5
Russia	11.4	1.63	4.5	-0.036	-2.4
Iran	8.2	0.66	1.8	0.014	1.9
Saudi Arabia	19.7	0.63	1.8	0.011	1.4
	International Bunkers				
Aviation and Shipping	-	1.37	3.8	0.053	4.0

Consumption-based Emissions

Consumption-based emissions allocate emissions to the location that goods and services are consumed

Consumption-based emissions = Production/Territorial-based emissions minus emissions embodied in exports plus the emissions embodied in imports GLOBAL CARBON Consumption-based emissions (carbon footprint)

Allocating fossil and industry emissions to the consumption of products provides an alternative perspective. USA and EU28 are net importers of embodied emissions, China and India are net exporters.

standard production-based emissions to account for international trade Source: Peters et al 2011; Le Quéré et al 2017; Global Carbon Project 2017 GLOBAL CARBON PROJECT COnsumption-based emissions (carbon footprint)

Transfers of emissions embodied in trade from non-Annex B countries to Annex B countries grew at over 11% per year between 1990 and 2007, but have since declined at over 1% per year.

Annex B countries were used in the Kyoto Protocol, but this distinction is less relevant in the Paris Agreement Source: <u>CDIAC</u>; <u>Peters et al 2011</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Major flows from production to consumption

Flows from location of generation of emissions to location of consumption of goods and services

CARBON

PROJECT

GLOBAL

Values for 2011. EU is treated as one region. Units: MtCO₂ Source: <u>Peters et al 2012</u>

Major flows from extraction to consumption

Flows from location of fossil fuel extraction to location of consumption of goods and services

CARBON

PROJECT

GLOBAL

Values for 2011. EU is treated as one region. Units: MtCO₂ Source: <u>Andrew et al 2013</u>

Land-use Change Emissions

Land-use change emissions

GLOBAL

CARBON PROJECT

Land-use change emissions are highly uncertain. Higher emissions in 2016 are linked to increased fires during dry El Niño conditions in tropical Asia

Le Quéré et al 2017; Global Carbon Budget 2017

Total global emissions: $40.8 \pm 2.7 \text{ GtCO}_2$ in 2016, 52% over 1990 Percentage land-use change: 42% in 1960, 12% averaged 2007-2016

Le Quéré et al 2017; Global Carbon Budget 2017

Land-use change was the dominant source of annual CO₂ emissions until around 1950

Others: Emissions from cement production and gas flaring Source: <u>CDIAC</u>; <u>Houghton and Nassikas 2017</u>; <u>Hansis et al 2015</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u> GLOBAL CARBON PROJECT Historical cumulative emissions by source

Land-use change represents about 31% of cumulative emissions over 1870–2016, coal 32%, oil 25%, gas 10%, and others 3%

Others: Emissions from cement production and gas flaring Source: <u>CDIAC</u>; <u>Houghton and Nassikas 2017</u>; <u>Hansis et al 2015</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Closing the Global Carbon Budget

GLOBAL CARBON Fate C

Fate of anthropogenic CO₂ emissions (2007–2016)

Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean The "imbalance" between total emissions and total sinks reflects the gap in our understanding

Source: <u>CDIAC</u>; <u>NOAA-ESRL</u>; <u>Houghton and Nassikas 2017</u>; <u>Hansis et al 2015</u>; <u>Joos et al 2013</u>; <u>Khatiwala et al. 2013</u>; <u>DeVries 2014</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Changes in the budget over time

GLOBAL

CARBON

The sinks have continued to grow with increasing emissions, but climate change will affect carbon cycle processes in a way that will exacerbate the increase of CO₂ in the atmosphere

The budget imbalance is the total emissions minus the estimated growth in the atmosphere, land and ocean. It reflects the limits of our understanding of the carbon cycle. Source: CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Le Quéré et al 2017; Global Carbon Budget 2017

The atmospheric concentration growth rate has shown a steady increase The high growth in 1987, 1998, & 2015-16 reflect a strong El Niño, which weakens the land sink

Source: NOAA-ESRL; Global Carbon Budget 2017

Source: SOCATv5; Bakker et al 2016; Le Quéré et al 2017; Global Carbon Budget 2017

Individual estimates from: Aumont and Bopp (2006); Buitenhuis et al. (2010); Doney et al. (2009); Hauck et al. (2016); Ilyina et al. (2013); Landschützer et al. (2016); Law et al. (2017); ; Rödenbeck et al. (2014). Séférian et al. (2013); Schwinger et al. (2016). Full references provided in Le Quéré et al. (2017).

The land sink was 11.2±3 GtCO2/yr during 2007-2016 and 10 ± 3 GtCO₂/yr in 2016 Total CO₂ fluxes on land (including land-use change) are constrained by atmospheric inversions

Source: Le Quéré et al 2017; Global Carbon Budget 2017

Individual estimates from: Chevallier et al. (2005); Clarke et al. (2011); Guimberteau et al. (2017); Hansis et al. (2015); Haverd et al. (2017); Houghton and Nassikas (2017); Jain et al. (2013); Kato et al. (2013); Keller et al. (2017); Krinner et al. (2005); Melton and Arora (2016); Oleson et al. (2013); Rodenbeck et al. (2003); Sitch et al. (2003); Sitch et al. (2003); Sitch et al. (2003); Sitch et al. (2014); Tian et al. (2015); van der Laan-Luijkx et al. (2017); Woodward et al. (1995); Zaehle and Friend (2010). Full references provided in Le Quéré et al. (2017).

Total land and ocean fluxes show more interannual variability in the tropics

Individual estimates from: Aumont and Bopp (2006); Buitenhuis et al. (2010); Chevallier et al. (2005); Clarke et al. (2011); ; Doney et al. (2009); Guimberteau et al. (2017); Hauck et al. (2016); Haverd et al. (2017); Ilyina et al. (2013); Jain et al. (2013); Kato et al. (2013); Keller et al. (2017); Krinner et al. (2005); Landschützer et al. (2016); Law et al. (2017); Melton and Arora (2016); Oleson et al. (2013); Reick et al. (2013); Rödenbeck et al. (2003); Rödenbeck et al. (2014); Séférian et al. (2013); Schwinger et al. (2016); Sitch et al. (2003); Smith et al. (2014); Tian et al. (2015); van der Laan-Luijkx et al. (2017); Woodward et al. (1995); Zaehle and Friend (2010). Full references provided in Le Quéré et al. (2017). **Remaining carbon budget imbalance**

GLOBAL

CARBON PROJECT

Large and unexplained variability in the global carbon balance caused by uncertainty and understanding hinder independent verification of reported CO₂ emissions

positive values mean overestimated emissions and/or underestimated sinks

The budget imbalance is the carbon left after adding independent estimates for total emissions, minus the atmospheric growth rate and estimates for the land and ocean carbon sinks using models constrained by observations Source: Le Quéré et al 2017; Global Carbon Budget 2017

The cumulative contributions to the global carbon budget from 1870 The carbon imbalance represents the gap in our current understanding of sources and sinks

GLOBAL CARBON Atmospheric concentration

The global CO₂ concentration increased from ~277ppm in 1750 to 403ppm in 2016 (up 45%) 2016 was the first full year with concentration above 400ppm

Globally averaged surface atmospheric CO₂ concentration. Data from: NOAA-ESRL after 1980; the Scripps Institution of Oceanography before 1980 (harmonised to recent data by adding 0.542ppm) Source: NOAA-ESRL; Scripps Institution of Oceanography; Le Quéré et al 2017; Global Carbon Budget 2017 **Trends in CO₂ emissions and concentrations**

CARBON

PROJECT

GLOBAL

Atmospheric CO₂ concentration had record growth in 2015 & 2016 due to record high emissions and El Niño conditions, but growth is expected to reduce due to the end of El Niño

Source: Peters et al 2017; Global Carbon Budget 2017

Our ability to detect changes in CO₂ emissions based on atmospheric observations is limited by our understanding of carbon cycle variability

Observations show a large-interannual to decadal variability, which can only be partially reconstructed through the global carbon budget. The difference between observations and reconstructed is the "budget imbalance". Source: <u>Peters et al 2017</u>; <u>Global Carbon Budget 2017</u>

Weekly CO₂ concentration measured at Mauna Loa stayed above 400ppm throughout 2016 and is forecast to average 406.8 in 2017

Forecasts are <u>an update</u> of <u>Betts et al 2016</u>. The deviation from monthly observations is 0.24 ppm (RMSE). Updates of <u>this figure</u> are available, and <u>another</u> on the drivers of the atmospheric growth Source: Tans and Keeling (2017), <u>NOAA-ESRL</u>, <u>Scripps Institution of Oceanography</u>

End notes

Global Carbon Budget 2017

In 2017, CO₂ emissions from fossil fuels and industry are projected to grow by 2.0% (+0.8 to +3.0%). This follows three years of nearly no growth (2014-2016)

The plateau of last year was not peak emissions after all...

...we are changing trajectory...

...but atmospheric concentrations continue to rise

 $\begin{array}{l} Atmospheric growth\\ increases in line with\\ total CO_2 emissions,\\ but has large variability.\\ The 2015-2016 El Nino\\ led to a record high\\ growth due to lower CO_2\\ uptake by tropical forests\\ \end{array}$

Produced by the Future Earth Media Lab for the Global Curbon Project. http://www.globalcarbonproject.org/carbonbudget/index.htm Written and edited by Pep Curuedall (CSIRD), Robbe Andrew and Glen Preses (OCERO), and Corner Le Quéré (Yindall Centre LEA) with the Global Carbon Budget tamu (Jobae fundos in Indegrate by Negel Hawin). Credits Le Quéré et al. Earth System Sonce Data Bocussons (2017), NAVA-SRL and the Scippe Institution of Oceanegraphy. CDA/LNC projection based to m INFOC analysis based of Rogel et al Natura OSI assuming constant Corg/Gle Tarto

The work presented in the **Global Carbon Budget 2017** has been possible thanks to the contributions of **hundreds of people** involved in observational networks, modeling, and synthesis efforts.

We thank the institutions and agencies that provide support for individuals and funding that enable the collaborative effort of bringing all components together in the carbon budget effort.

We thank the sponsors of the GCP and GCP support and liaison offices.

futurearth research for global sustainability We also want thank each of the many funding agencies that supported the individual components of this release. A full list in provided in Table B1 of Le Quéré et al. 2017. <u>https://doi.org/10.5194/essdd-2017-123</u>

We also thanks the Fondation BNP Paribas for supporting the Global Carbon Atlas.

This presentation was created by Robbie Andrew with Pep Canadell, Glen Peters and Corinne Le Quéré in support of the international carbon research community.

European

Commission

Attribution 4.0 International (CC BY 4.0)

This deed highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. You should carefully review all of the terms and conditions of the actual license before using the licensed material. This is a human-readable summary of (and not a substitute for) the license.

You are free to: **Share** — copy and redistribute the material in any medium or format **Adapt** — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.