RECCAP
REgional Carbon Cycle Assessment and Processes

Version: 6 October 2010
Scope

• To establish the mean carbon balance of large regions of the globe at the scale of continents and large ocean basins, including their component fluxes.

• To do it by comparing and reconciling multiple bottom-up estimates with the results of regional top-down atmospheric inversions, with attribution to main flux components.

• To evaluate the regional ‘hot-spots’ of interannual variability and possibly the trends and underlying processes over the past two (or more) decades by combining available long-term observations and modeling.
Why RECCAP?

• To provide higher spatial resolution of the global carbon balance with the aim to improve attribution to processes and hot-spots regions essential to understand the future evolution of the carbon-climate feedback.

• To address a growing demand for a capacity to Measure, Report, and Verify (MRV) the evolution of regional fluxes and the outcomes of climate mitigation policies.

• To develop the technical capacity in regions with regional carbon balances of global significance but with little or not technical capabilities.

• To respond to the Group on Earth Observations (EOS) in establishing a global carbon observatory to track the evolution of natural and anthropogenic carbon sources and sinks.
How we expect to achieve it

• Establishing a large global coordination effort.

• Developing of a “soft protocol” to guide and ensure consistency among regional syntheses (so they can be compared and add up at the end).

• Relying primarily on:
 – existing analyses,
 – ongoing analyses from regional and national programs (eg, North American Carbon Plan, CarboEurope, Australian NCAS),
 – global modeling and assessment efforts (eg, GCP Carbon Budget, GCP-TRENDY, TRANSCOM, SOCAT).

• Relying secondarily on:
 – the establishment of new synthesis teams in regions where there is not an established carbon program.
RECCAP Principle
Multiple Constraints to Understand One Carbon Budget

Top-down

Atmospheric CO$_2$ Inversion Models + ghg observations

Bottom-up

Land, Ocean models + Observations (in situ + remote sensing)

Regional Carbon Balance
Components of Regional Synthesis

Tier 1

Global Products

- Regional fluxes
- Atmospheric CO$_2$ Inversion Models
- TransCom
 (Low resolution)

Regional Carbon Balance

- Regional cuts from global land & ocean models
 (Low resolution)
- Regional cuts from global data products

Tier 1 model outputs are coordinated by RECCAP
Components of Regional Synthesis

Tier 1
Global Products

Regional fluxes
Atmospheric CO₂
Inversion Models
TransCom
(Low resolution)
+ Global Obs. Network

Tier 2
Regional-Specific Products

Regional application
Atmospheric CO₂
Inversions Model
(High resolution)
+ Regional ghg obs.

Regional Carbon Balance

Regional cuts from global land & ocean models
(Low resolution)
+ Regional cuts from global data products
+ Regional specific Models
(continental, ocean basin, biome, land use change, others)
+ Regional specific observations
(fluxes, pCO₂, remote sensing, forest inv., others)

Tier 1 model outputs are coordinated by RECCAP
Synthesis Approach
(top-down and bottom-up)

- **Reconciliation of flux estimates** (independently assessed and often partially overlapping) as a means to build confidence in our understanding of the component fluxes, mean estimates, and inter-annual variability.

- Although we are ultimately interested in building a mathematically-formalized multiple constraint approach, model data fusion or data assimilation, RECCAP is not pursuing this approach in its first phase with a completion date of end of 2011.

- Uncertainties need to be quantitatively estimated.
Global Model Outputs for Regional Syntheses

<table>
<thead>
<tr>
<th>Product</th>
<th>Specifications</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric CO\textsubscript{2} inversions</td>
<td>TransCom (12 models), 1 x 1 grid, regional integrated fluxes according to RECCAP mask. To 2008</td>
<td>Kevin Gurney, Rachel Law, Philippe Peylin</td>
</tr>
<tr>
<td>Ocean forward biogeochemical models</td>
<td>Five global models at 1 x 1 for all major flux components. To 1958-2009</td>
<td>Corinne Le Quere</td>
</tr>
<tr>
<td>Ocean inversion</td>
<td>1 model.</td>
<td>Niki Grubber</td>
</tr>
<tr>
<td>Terrestrial biogeochemical models and NEP-flux model</td>
<td>Five Dynamic Global Vegetation Models, gridded output for all major flux components. To 2009. GPP and NEP from eddy flux data-driven model</td>
<td>Stephen Sitch, Pierre Friedlingstein, Markus Reichstein</td>
</tr>
<tr>
<td>Fire emissions</td>
<td>0.5° x 0.5°, monthly, burned area and fire emissions (C, CO\textsubscript{2}, CO, CH\textsubscript{4}, NOx, N\textsubscript{2}O, BC others) 1997-2009.</td>
<td>Guido van Werf</td>
</tr>
</tbody>
</table>
Data Fair-Use Policy

• Inspired on the successful model of the AmeriFlux data policy (also used in FluxNet):
 – Request permission to use.
 – Assess possible clashes with other users.
 – Determine which arrangement are appropriate:
 • co-authorship
 • acknowledgements
Which ghgs?

Species:
- **Minimum requirement**: \(\text{CO}_2 \)
- **Additional**: \(\text{CH}_4, (\text{N}_2\text{O}, \text{others}) \)

Spatially explicit:
- **Minimum requirement**: Biological fluxes of \(\text{CO}_2 \) (\(\text{CH}_4, \text{N}_2\text{O}, \text{others} \))
- **Additional**: Fossil Fuel emissions
RECCAP period

Variable but centered around:

- Budget period: 1990-2007/9
- 1983-2007/9 (ocean trends observations)
Global Assessments

- Fossil fuel emissions
- Land use change emissions
- Global atmospheric budget
- Global ocean surface CO_2
- Global ocean storage
- Coastal Ocean
- Rivers fluxes
- Embedded fluxes in international trade
Land and Ocean Regional Syntheses

Land

L1	Africa
L2	Arctic tundra
L3	Australia
L4	Europe
L5	North America
L6	Russia
L7	South America
L8	East Asia
L9	Southeast Asia
10	South Asia

Oceans

O2	Pacific
O3	Atlantic and Arctic
O4	Southern Ocean
O5	Indian
Global Syntheses of Syntheses

Ch-S1 Comparison of top & bottom up

Ch-S2 Inter-annual var. region.

Ch-S3 Attribution to regional processes

Ch-S4 Past and future trends in regional C budgets

Ch-S5 Final recommendations
Regional Masks
Products

• **Scoping paper for EOS or “News” in Science:** 'An international endeavour to tackle regional carbon fluxes'

• **Special Journal Issue/s** (online eg, Biogeosciences, IF=3-4) with all regional and global syntheses.

• **2-4 high-level syntheses papers reporting** key results (eg, Special feature in Nature-Geosciences, or Nature-Climate Change).

• **Summary for Policy Makers.**

• **Distributed Data Repository** (to be updated in the future) of C fluxes from regional and global estimates available for further research and publications.
Objectives of 2nd Workshop

- To work towards a set of agreed high-level syntheses: “syntheses of syntheses”.

- It is an intense 5-day meeting modeled to the Dahlem conferences (e.g., Ubatuba Carbon Cycle Scope Book, 2004).

- Background papers are written in advance, i.e., all regional and global syntheses (and made available to participants).

- We produce 1st order drafts for all agreed “syntheses of syntheses”.

- Mss. to be completed and submitted over the following 6 months; individually submitted or as part of a set for a special feature in e.g., Nature-Geo or Nature-Climate Change.
2nd Workshop: Syntheses of Syntheses

Initial Ideas

- Comparison of atmospheric and bottom up fluxes (mean decadal).

- Inter-annual variability at regional scale.

- Attribution to regional processes over the globe.

- Future regional carbon trends.

- Methods (protocols and uncertainty analyses).

- Final recommendations
Scientific Steering Committee

- Philippe Ciais, *Chair* (France)
- Pep Canadell, *Coordinator* (Australia)
- Han Dolman (The Netherlands)
- Niki Gruber (Switzerland)
- Kevin Gurney (USA)
- Corinne Le Quere (UK)
- Mac Post (USA)
- Mike Raupach (Australia)
- Chris Sabine (USA)
- Piao Shilong (China)
- Stephen Sitch (UK)
Partners and Sponsors

- COordination action Carbon Observation System (COCOS), Europe
- Carbon Cycle Science Program - CCIWG, USA
 - International Ocean Carbon Coordination Project (IOCCP)
 - Chinese Science Academy (CAS), China
 - CSIRO Marine and Atmospheric Research, Australia
 - National Institute for Environmental Studies (NIES), Japan
- Carbo-Africa
- Quantifying and Understanding the Earth System (QUEST), UK
www.globalcarbonproject.org/RECCAP