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Abstract

Systematic, operational, long-term observations of the terrestrial carbon cycle (including

its interactions with water, energy and nutrient cycles and ecosystem dynamics) are

important for the prediction and management of climate, water resources, food

resources, biodiversity and desertification. To contribute to these goals, a terrestrial

carbon observing system requires the synthesis of several kinds of observation into

terrestrial biosphere models encompassing the coupled cycles of carbon, water, energy

and nutrients. Relevant observations include atmospheric composition (concentrations

of CO2 and other gases); remote sensing; flux and process measurements from intensive

study sites; in situ vegetation and soil monitoring; weather, climate and hydrological

data; and contemporary and historical data on land use, land use change and disturbance

(grazing, harvest, clearing, fire).

A review of model–data synthesis tools for terrestrial carbon observation identifies

‘nonsequential’ and ‘sequential’ approaches as major categories, differing according to

whether data are treated all at once or sequentially. The structure underlying both

approaches is reviewed, highlighting several basic commonalities in formalism and data

requirements.

An essential commonality is that for all model–data synthesis problems, both

nonsequential and sequential, data uncertainties are as important as data values

themselves and have a comparable role in determining the outcome.

Given the importance of data uncertainties, there is an urgent need for soundly based

uncertainty characterizations for the main kinds of data used in terrestrial carbon

observation. The first requirement is a specification of the main properties of the error

covariance matrix.

As a step towards this goal, semi-quantitative estimates are made of the main

properties of the error covariance matrix for four kinds of data essential for terrestrial

carbon observation: remote sensing of land surface properties, atmospheric composition

measurements, direct flux measurements, and measurements of carbon stores.
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Introduction

Systematic earth observation implies the collection and

interpretation of multiple kinds of data about the

evolving state of the earth system across wide spatial

domains and over extended time periods. Three factors

have caused a massive acceleration in earth observation

activities over recent years. The first is need: global

change is raising issues – such as greenhouse-induced

climate change, water shortages and imbalances, land

degradation, soil erosion, loss of biodiversity – which

require informed human responses at both global and

regional levels. Second, technological advances in

sensors, satellite systems and data storage and proces-

sing capabilities are making possible observations and

interpretations which were out of reach only a few

years ago and unimaginable a few decades ago. Third,

the synthesis of formerly discrete disciplines into a

unified Earth System Science is driving new hypotheses

about the dynamics of the earth system and the

interconnectedness of its components, including hu-

mans. Systematic earth observation motivates and tests

these hypotheses.

The focus of this paper is observation of the carbon

cycle, and in particular its land-atmosphere compo-

nents, as one part of an integrated earth observation

system. It is a significant part because of the coupling

between the carbon cycle and the terrestrial cycles of

water, energy and nutrients, and the connections of all

these biospheric processes with global climate and

human activities (Field & Raupach, 2004; Raupach et al.,

2004). The carbon cycle is integral to the growth and

decay of vegetation, maintains the water cycle through

transpiration and provides habitat for maintaining

biodiversity. Thus, terrestrial carbon observation is

important for climate observation and prediction, for

the management of water resources, nutrients and

biodiversity, and for monitoring and managing the

enhanced greenhouse effect.

It is increasingly recognized that strategies for earth

observation (including terrestrial carbon observation)

require methods for combining data and process

models in systematic ways. This is leading to research

towards the application in terrestrial carbon observa-

tion (and in earth observation more generally) of

‘model–data synthesis’, the combination of the infor-

mation contained in both observations and models

through both parameter-estimation and data-assimila-

tion techniques. Motivations for model–data synthesis

approaches include (1) model testing and data quality

control (through systematic checks for agreement

within specified uncertainty bands for both data and

model); (2) interpolation of spatially and temporally

sparse observations; (3) inference from available ob-

servations of quantities which are not directly obser-

vable (such as carbon stores and fluxes over large areas)

and (4) forecasting (prediction forward in time on the

basis of past and current observations).

The present paper arose from a workshop held in

Sheffield, UK, 3–6 June 2003, to further the develop-

ment of a Terrestrial Carbon Observation System

(TCOS) with a particular emphasis on model–data

synthesis. Antecedents for this effort were (1) pre-

liminary steps toward a TCOS (Cihlar et al., 2002a, b, c);

(2) a wider concept for an Integrated Global Carbon

Observing Strategy including atmosphere, oceans, land

and human activities (Ciais et al., 2004) and (3) the

research program of the Global Carbon Project (Global

Carbon Project, 2003).

The paper is founded on three themes arising from

the Sheffield workshop. First, model–data synthesis,

based on terrestrial biosphere models constrained with

multiple kinds of observation, is an essential compo-

nent of a TCOS. Second, from the standpoint of model–

data synthesis, data uncertainties are as important as

data values themselves and have a comparable role in

determining the outcome. Third, and consequently,

there is an urgent need for soundly based uncertainty

specifications for the main kinds of data used in

terrestrial carbon observation. These themes are devel-

oped as follows: the next section summarizes major

purposes and attributes of a TCOS. ‘Model–data

synthesis: methods’ provides an overview of model–

data synthesis in the context of terrestrial carbon

observation, by briefly describing some of the main

methods, indicating their common characteristics, and

highlighting the key role of data uncertainty. ‘Model–

data synthesis: examples’ provides some examples.

‘Data characteristics: uncertainty in measurement and

representation’ undertakes a survey of the uncertainty

characteristics of the main kinds of relevant data.

Purposes and attributes of a TCOS

A succinct statement of the overall purpose of a TCOS

might be: to operationally monitor the cycles of carbon

and related entities (water, energy, nutrients) in the

terrestrial biosphere, in support of comprehensive,

sustained earth observation and prediction, and hence

sustainable environmental management and socio-

economic development. These words are congruent

with the Framework Document emerging from the

Second Earth Observation Summit, Tokyo, April 2004

(http://earthobservations.org/docs/Framework%20-

Doc%20Final.pdf), which calls for a ‘Global Earth

Observation System of Systems’ to serve nine areas of

socio-economic benefit. A TCOS is a contributor to such

a system with relevance to at least six of these areas:
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� Understanding climate, and assessing and mitigat-

ing climate change impacts;

� Improving global water resource management and

understanding of the water cycle;

� Improving weather information and prediction;

� Monitoring and managing inland ecosystems, in-

cluding forests, and land use change;

� Supporting sustainable agriculture and combating

desertification;

� Understanding, monitoring and preventing loss of

biodiversity.

To make these contributions effectively, a TCOS must

have a number of attributes (see also Running et al.,

1999; Cihlar et al., 2002a; Ciais et al., 2004). First, scientific

credibility is needed to maintain methodological and

observational rigour, and to include procedures for

estimating uncertainties or confidence limits. Second,

consistency with global budgets is necessary to respect

constraints from global-scale carbon and related bud-

gets incorporating terrestrial, atmospheric and oceanic

pools and anthropogenic sources such as fossil fuel

burning. Third, sufficient spatial resolution is necessary

to resolve spatial variations in patterns of land use

(typically tens of metres, consistent with high-resolu-

tion remote sensing). Fourth, enough temporal resolution

is needed to resolve the influence of weather, inter-

annual climate fluctuations and long-term climate

change on carbon and related cycles. Fifth, the system

needs to encompass a broad range of entities, eventually

including CO2, CH4, CO, volatile organic carbons

(VOCs) and aerosol black carbon. Of these, the highest

priority is CO2. Water is also a high priority because of

its importance in modulating other terrestrial GHG

fluxes. Sixth, a sufficient range of processes must be

encompassed. A high priority is resolution of net land-

air fluxes of greenhouse gases in which all terrestrial

sources and sinks are lumped together. However, there

is an equally high demand for identification of the

terms contributing to the net fluxes, for example to

partition a net flux between vegetation and soil storage

changes. Finally, quantification of uncertainty is required.

The ‘demand side’ of the uncertainty issue is: what

level of uncertainty is acceptable for a TCOS to offer

useful information? The answer is not simple and

depends on the application, for example, from the areas

mentioned above. This paper does not attempt to

answer the demand-side question, but rather concen-

trates on the ‘supply side’ of uncertainty: that is, how

uncertainty can be determined in a TCOS based on

model–data synthesis and multiple observation

sources, each with its own specified uncertainty.

Model–data synthesis: methods

In this section, we survey a range of model–data

synthesis methods potentially applicable in a TCOS.

More detail and further references can be found in a

growing number of excellent sources, for instance

Tarantola (1987) and Evans & Stark (2002) for high-

level treatments of the general statistical problem of

inverse estimation, Grewal & Andrews (1993) and

Drécourt (2003) for introductions to the Kalman Filter,

Reichle et al. (2002) for hydrological applications with

an emphasis on the Kalman Filter and Enting (2002)

and Kasibhatla et al. (2000) for applications of a range of

methods to biogeochemical cycles.

Overview

The central problem is: using appropriate observations

and models, we must determine the spatial distribu-

tions and temporal evolutions of the terrestrial stores

and fluxes of carbon and related entities (water,

nutrients, energy) across the earth. Important fluxes

include land–air exchanges (atmospheric sources and

sinks), exchanges with rivers and groundwater, and

exchanges between terrestrial pools such as biomass

and soil. We also need to determine the main processes

influencing the fluxes, including those under human

management. No single model or set of observations

can supply this amount of information – hence the need

for a synthesis approach. The task of combining

observations and models can be carried out in many

ways, encompassed by the umbrella terms ‘model–data

synthesis’ or ‘model–data fusion’. The general principle

is to find an ‘optimal match’ between observations and

model by varying one or more ‘properties’ of the

model. (Words in quotes have specific meanings

defined below). The optimal match is a choice of model

properties, which minimizes the ‘distance’ between the

model representations of a system and what we know

about the real biophysical system from observational

and prior ‘data’. At this high level of generality, model–

data synthesis encompasses both ‘parameter estima-

tion’ and ‘data assimilation’. All applications rest on

three foundations: a model of the system, data about

the system, and a synthesis approach.

Model. For a TCOS, the model is a terrestrial biosphere

model describing the evolving stores and fluxes of

carbon, water, energy and related entities. This dynamic

model has the form

dx

dt
¼fðx;u;pÞ þ noise or

xnþ1 ¼uðxn;un;pÞ þ noise ¼ xn þ Dt fðxn;un;pÞ þ noise;

ð1Þ
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where x is a vector of state variables (such as stores of

carbon, water and related entities, or store attributes

such as age class distributions); f is a vector of rates of

change (net fluxes where components of x are stores); u
is the discrete analogue for f; u is a set of externally

specified time-dependent forcing variables (such as

meteorological variables and soil properties) and p is a

set of time-independent model parameters (such as rate

constants and partition ratios). In the discrete

formulation, time steps are denoted by superscripts.

The noise terms account for both imperfections in

model formulation and stochastic variability in forcings

(u) or parameters (p). Once the model function f(x, u, p)

or u(xn, un, p) is specified, then the system evolution x(t)

can be determined by integrating Eqn (1) in time (with

zero noise), from initial conditions x(0), with specified

external forcing u(t) and parameters p.

Data. These are generally of two broad kinds: (1)

observations or measurements of a set of quantities z

and (2) prior estimates for model quantities (x, u and p).

Both include uncertainty, through errors and noise. In

this paper, the term ‘data’ includes both observations

and prior estimates, and incorporates the uncertainty

inherent in each.

The measured quantities (z) are related to the system

state and external forcing variables by an observation

model of the form

z ¼ hðx;uÞ þ noise; ð2Þ

where the operator h specifies the deterministic

relationship between the measured quantities and the

system state. The noise term accounts for both

‘measurement error’ (instrumental and processing

errors in the measurements z), and ‘representation

error’ (errors in the model representation of z,

introduced by shortcomings in the observation model

h). In the rare case where we can observe all state

variables directly, h reduces to the identity operator, so

z5 x1 (measurement) noise. In time-discrete form, Eqn

(2) becomes zn5h(xn
, un)1noise. Note the inter-

pretation of the time-step superscripts: xn and un are

simply the model state and forcings at time step n,

whereas zn is the set of new observations introduced at

time step n, whatever the actual time of its measu-

rement. However, no observations may be used more

than once.

Examples of potential observations in a TCOS

include (1) atmospheric composition (concentrations

of CO2 and other gases); (2) remote sensing of terrestrial

and atmospheric properties; (3) fluxes of carbon and

related entities, with supporting process observations,

at intensive study sites; (4) vegetation and soil stores of

carbon from forest and ecological inventories; (5)

hydrological data on river flows, groundwater, and

concentrations of C, N and other entities; (6) soil

properties and topography; (6) disturbance records

(both contemporary and historical) including land

management, land use, land use change and fire and

(8) climate and weather data (precipitation, solar

radiation, temperature and humidity). Of these, some

(especially the first five) typically provide observational

constraints (z), while others provide model drivers (u).

Examples of observation models (Eqn (2)) include

radiative transfer models to map modelled surface

states into the radiances observed by satellites;

atmospheric transport models to transform modelled

surface fluxes to measured atmospheric concentrations;

and allometric relations to transform modelled biomass

to observed tree diameters.

Synthesis. The final requirement is a synthesis process,

or a systematic method for finding the optimal match

between the data (including observations and prior

estimates) and the model. This process needs to provide

three kinds of output: optimal estimates for the model

properties to be adjusted, uncertainty statements about

these estimates, and an assessment of how well the

model fits the data, given the data uncertainties. In any

synthesis process, there are three basic choices: (1) the

model properties to be adjusted or ‘target variables’, (2)

the measure of distance between data and model or

‘cost function’ and (3) the search strategy for finding the

optimum values. Search strategies can be classified

broadly into (3a) ‘nonsequential’ or ‘batch’ strategies in

which the data are treated all at once, and (3b)

‘sequential’ strategies in which the data arrive in a

time sequence and are incorporated into the model–

data synthesis step by step. The rest of this section

explores the choices (1), (2), (3a) and (3b).

Target variables

The target variables are the properties of the model to

be adjusted in the optimization process. They include

any model property considered to be sufficiently

uncertain as to benefit from constraint by the data.

Model properties which can be target variables include:

(1) model parameters (p); (2) forcing variables (un), if

there is substantial uncertainty about them; (3) initial

conditions on the state variables (x0) and (4) time-

dependent components of the state vector xn. The

inclusion of the state vector xn as a possible target

variable is for the following reason: in a purely

deterministic model the trajectory xn is determined by

the dynamical model (f or u), the values of p and un,

and the initial value x0. It might seem sufficient,

therefore, to estimate these and allow integration of
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the model to take care of xn. However, the model itself

may not be perfect, as indicated by the noise term in

Eqn (1), so there may be advantage in adjusting values

of xn through the model integration.

To maintain generality, we denote the vector of target

variables by y. This vector may or may not be a function

of time, and will usually be a subset of all model

variables (xn, un, p). Broadly speaking, parameter esti-

mation problems are those where the target variables

are restricted to model parameters (p), while data

assimilation problems may include any model property

as a target variable, usually with an emphasis on state

variables (xn).

Cost function

The cost or objective function J (a function of the target

variables y) defines the mismatch or distance between

the model and the data. It can take a wide range of

forms, but must have certain properties (for example, it

must be monotonic in the absolute difference between

data and model-predicted values). A common choice is

the quadratic cost function:

JðyÞ ¼ðz � hðyÞÞT½Cov z��1ðz � hðyÞÞ
þ ðy � y

_ÞT½Cov y
_��1ðy�y

_Þ;
ð3Þ

where y
_

is the vector of ‘priors’ (a priori estimates) for

the target variables, and [Cov z] and ½Cov y
_� are

covariance matrices for z and y
_

, respectively

(½Cov z�mn ¼ z0mz0n
� �

, with z0m ¼ zm � zmh i, angle brackets

denoting the expectation operator). The first term in

Eqn (3) is a sum of the squared distances between

measured components of the observation vector (z) and

their model predictions (h(y)), while the second is a

corresponding sum of distances between target vari-

ables and their prior estimates. The matrices [Cov z]�1

and ½Cov y
_��1represent the weights accorded to the

observations and the priors, and thus scale the

confidences accorded to each. Their role can be clarified

by considering the simple case in which components zm

of the observation vector z are independent, with

variances s2
m; then [Cov z]�1 is the diagonal matrix

diag ½1=s2
m� and the squared departures of the measure-

ments (zm) from the predictions (hm(y)) are seen to be

weighted by the confidence measure 1=s2
m for each

component.

The model–data synthesis problem now becomes:

vary y to minimize J(y), subject to the constraint that

x(t) must satisfy the dynamic model, Eqn (1). The value

of y at the minimum is the a posteriori estimate of y,

including information from the observations as well as

the priors. We denote it by y
^

(so frowns and smiles

respectively designate prior and posterior estimates).

Equation (3) defines the generalized least squares cost

function minimized by the minimum-variance estimate

(y
^

) for y. For any distribution of the errors in the data

(observations z and priors y
_

), this estimate is unbiased,

and has the minimum error covariance among all linear

(in z), unbiased estimates (Tarantola 1987). Use of Eqn

(3) has another, additional foundation: provided that

the probability distributions for data errors are Gaus-

sian, it yields a maximum-likelihood estimate for y,

conditional on the data and the model dynamics (Press

et al., 1992, p. 652; Todling 2000). Outside the restriction

of Gaussian distributions, y
^

as defined by minimizing a

quadratic J is not exactly the maximum-likelihood

estimate, but it is often not far from it. A quadratic J

is widely used even when the data errors are not

Gaussian; see Press et al. (1992, p. 690) for discussion.

There are alternative cost functions J in which model-

measurement differences (z�h(y)) are raised to powers

other than 2, the choice in Eqn (3) (Tarantola, 1987;

Gershenfeld, 1999). For example, in flood event model-

ling, the absolute maximum error is needed to capture

peak flow rates, while for modelling base flow rates, the

mean absolute deviation (|z–h(y)| to the power 1) has

the desirable property of being less sensitive to outliers

than a power 2. Different powers for |z–h(y)| produce

maximum-likelihood estimates for y
^

with different

distributions for data errors; for example, a power 1 J

yields a maximum-likelihood estimate when the data

errors are distributed exponentially, and a high-power J

preferentially weights outliers such as peak flows.

Here, we use a power 2 J exclusively.

Search strategies for nonsequential problems

In nonsequential or batch problems, all data are treated

simultaneously and the minimization problem is solved

only once. A familiar case is least-squares parameter

estimation.

Example. Some of the attributes of these problems are

demonstrated by considering a simple linear example,

which extends the parameter-estimation problem.

Although mathematically straightforward, this case

finds important application in the atmospheric

inversion methods used to estimate trace gas sources

from atmospheric composition observations (see

‘Model–data synthesis: Examples’). Here the target

variables (y) are a set of surface-air fluxes, averaged

over suitable areas; there is no dynamic model relating

fluxes at different times and places to each other; and

the observation operator (h) is a model of atmospheric

transport. From the linearity of the conservation

equation for an inert trace gas, it follows that h is

linear and can hence be represented by a matrix H
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(Raupach, 2001), thus, z5Hy1noise. For now, the

noise is assumed to be Gaussian with zero mean and no

temporal correlation, and thus completely characterised

by an observation error covariance matrix [Cov z]. By

minimizing J analytically, one obtains the expression

(Tarantola, 1987, p. 196; Enting, 2002):

y
^ ¼ y

_ þ Cov y
^

h i
HT Cov z½ ��1 z � Hy

_
� �

; ð4Þ

where ½Cov y
^�, the estimated error covariance of the a

posteriori estimate y
^

, is given by

½Cov y
^��1 ¼ ½Cov y

_��1 þ HT½Cov z��1H: ð5Þ

These expressions already tell us some important

things. The posterior estimates are given by the prior

estimates plus a term depending on the mismatch

between the experimental observations and the

observations as predicted by the prior estimates. This

mismatch is weighted by our confidence in the

observations, [Cov z]�1. Thus, observations with little

weight hardly shift the posterior estimate from the

prior, and vice versa. Furthermore, the transpose of the

observation operator (HT) multiplies the weighted

mismatch. If this operator is very weak, that is if the

available observations are only weakly related to the

target variables, then the update to the initial estimate is

also small. Finally the posterior covariance ½Cov y
^� (Eqn

(5)) is bounded above, in some sense, by the prior

covariance ½Cov y
_�. If the prior covariance is small

(suggesting substantial confidence in the initial

estimate) then the increment y
^ � y

_
(the difference

between the posterior and prior estimates, a measure

of the information added by the observations z, and

equal to the second term in Eqn (4) in the present case)

is also small.

All the above is reasonable. More surprising is the

relationship between the data, its uncertainty and the

cost function. We can decompose the (positive definite)

matrix [Cov z]�1 into a matrix product ATA, using the

Cholesky decomposition for a positive definite matrix.

For a diagonal covariance matrix, diag ½s2
m�, the

decomposition is trivial: A5diag ½1=s2
m�. Likewise, we

can write ½Cov y
_��1

5BTB. The cost function, Eqn (3),

can then be rewritten as

JðyÞ ¼ ða � AhðyÞÞTða � AhðyÞÞ

þðb � b
_

ÞTðb � b
_

Þ; ð6Þ

where a5Az, b5By and b
_

¼ By
_

. Thus the cost

function, and thence the entire minimization, takes a

form in which neither the observations nor the prior

estimates appear; they are replaced by quantities a and

b scaled by the square roots of the inverse covariance

matrices, which are measures of confidence. This is no

mathematical nicety; rather it demonstrates that the

data and the uncertainties are completely inseparable in

the formalism. To put the point provocatively,

providing data and allowing another researcher to

provide the uncertainty is indistinguishable from

allowing the second researcher to make up the data in

the first place. This realization informs the emphasis on

uncertainty throughout this paper.

Algorithms for nonsequential problems

The task in general is to find the target variables y

which minimize J(y). Clearly, the shape of J(y) is all

important: it may have a single minimum or multiple

separated local minima, only one of which is the true

global minimum. Near the minimum, J may be shaped

like a long, narrow ellipsoidal valley. If this valley has a

flat floor tracing out some line in y space, then all points

along that line are equally acceptable and these y

coordinates cannot be distinguished in terms of

optimality, so such combinations of target variables

cannot be resolved by model–data synthesis with the

available data and model. Diagnostic indicators about

these issues are provided by the Hessian or curvature

matrix D5 @2J/@yj@yk, a measure of the local curvature

of J(y). The degree of orthogonality among columns of

D indicates the extent to which it is possible to find a

unique local minimum to J(y) in the vicinity of the point

at which D is evaluated. A high ‘condition number’

(ratio of largest to smallest eigenvalue) for D indicates

that some linear combination(s) of the columns of D are

nearly zero, that is, that the curvature is nearly zero in

some direction(s), so that the minimization problem is

ill-conditioned, as in the case of a valley with a flat floor.

Given these considerations, classes of method for

finding the minimum in J(y) include the following.

1. Analytic solution is possible when the observation

operator h(y) is linear (z5Hy1noise). In this case J(y)

is a quadratic form shaped like a parabolic bowl, and

the minimization can be carried out analytically as in

the example of Eqns (4) and (5). This ‘direct’ or ‘one-

step’ solution is highly efficient when applicable;

however, most problems are nonlinear and require a

nonlinear method.

2. Gradient descent algorithms are the most familiar

search algorithms for nonlinear optimization. They

include (for example) steepest-descent, conjugate-gra-

dient, quasi-Newton and Levenberg–Marquardt algo-

rithms (Press et al., 1992). Gradient-descent methods are

easily implemented, provided that the gradient vector

HyJ5 @J/@yk can be calculated. The main advantages of

gradient-descent algorithms are relative simplicity and

low cost; the main disadvantage is that if the surface

J(y) has multiple minima, they tend to find local
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minima near the starting value of y rather than the

global minimum.

3. Global search methods find the global minimum in a

function J(y) by searching (effectively) the whole of y

space. They overcome the local-minimum pitfall (so to

speak) of gradient-descent methods, but have the

disadvantage of higher computational costs. Simulated

annealing and genetic algorithms are two examples.

These methods are efficient at finding the vicinity of a

global minimum where there may be multiple local

minima, but do not locate an exact local minimum.

They may be combined with gradient-descent methods

for finding an exact global minimum once in the right

vicinity.

Search strategies for sequential problems

In sequential problems, the task is to solve for a set of

target variables yn associated with a particular time

step, usually including the state variables of the

dynamic model (xn). The process is then repeated

sequentially to give a time history for yn. Information

about yn can come from two sources: evolution of the

dynamic model from the previous time step, and

comparison between the observations at the current

time step (zn) and the model predictions (h(yn)).

Kalman filter. Introduced by Kalman (1960), the Kalman

filter is by now a group of algorithms for the sequential

combination of dynamic and observational

information, using a ‘prediction’ step and an

‘analysis’ step. In the prediction step, the dynamic

model is used to calculate prior estimates y
_n

for the

target variables at time step n, from the best (posterior)

estimates y
^n�1

at the previous step. In the analysis step,

posterior estimates y
^n

at step n are obtained by

‘improving’ the prior estimates with data. The model

state is then ready for evolution to the next (n1 1) time

step. A key point is that the confidence in the current

state, embodied in the error covariance for the target

variables y, is also evolved with the dynamic model and

improved with observations. A schematic diagram of

the information flow in the Kalman filter is given in Fig.

1.

In the prediction step, the task of evolving y is

common across all implementations of the Kalman

filter since it involves only a normal forward step of the

dynamic model: y
_n

¼ u y
^n�1

� �
. The prior estimate for

the covariance at time step n evolves according to

½Cov y
_n

� ¼ U½Cov y
^n�1

�UT þ Q; ð7Þ

where U5 @u/@y, the Jacobian matrix of the dynamic

model u(y). The first term on the right represents the

propagation of the error covariance in the target

variables y from one time step to the next, by a

linearized version of the model. The second term (Q) is

the covariance of the noise term in the dynamic model,

Eqn (1), which includes both model imperfections and

stochastic variability in forcings and parameters. This

term plays a crucial role in the Kalman filter: it

quantifies our lack of confidence in the ability of the

dynamic model to propagate the model state, and is

usually referred to as model error. In most imple-

mentations of the Kalman filter the model error is

assumed to be Gaussian with zero mean and no tem-

poral correlation, and thus completely characterized by

the covariance matrix Q.

In the analysis step, the prior estimates are refined

by the inclusion of data. This is done using the prior

estimate for the predicted observation vector,

z
_n

¼ hðy
_n

Þ, and its covariance

½Cov z
_n

� ¼ H½Cov y
_n

�HT þ R; ð8Þ

where H5 @h/@y is the Jacobian matrix of the

observation model h(y), and R is the data covariance

matrix [Cov z], indicating lack of confidence in the data

and often called the data error. Again it is usually

assumed that the data error is Gaussian with zero mean

and no temporal correlation, and thus completely

characterized by R5 [Cov z].

The expressions for the final (posterior) estimates for

y and its covariance are now exactly as for the

nonsequential mode, except that the operation is

carried out for one time step only:

y
^n

¼y
_n

þ ½Cov y
_n

�HT½Cov z
_n

��1ðzn � hðy
_n

ÞÞ

¼y
_n

þ Kðzn � hðy
_n

ÞÞ;
ð9Þ

½Cov y
^n

��1 ¼½Cov y
_n

��1 þ HTRH or

½Cov y
^n

� ¼ðI � KHÞ½Cov y
_n

�;
ð10Þ

  

K

H

H Analysis
steps

zn−1 yn−1

zn

zn yn

yn

Observable
State

variable
State

uncertainty

 Φ, QΦ 

H, R

difference

Prediction
step

Time step n−1
(posterior)

Time step n
(prior)

Time step n
(posterior)

Cov yn−1

Cov yn

Cov yn

Fig. 1 Information flow in the linear Kalman filter. Linear

operators are indicated next to arrows. Operations in prediction

and analysis steps are shown as dashed and solid lines,

respectively.
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where K ¼ ½Cov y
_n

�HT½Cov z
_n

��1is the Kalman gain

matrix. The two equalities in Eqn (10) are equivalent.

Time step n is now complete, and we are ready for the

next time step. We note that the ratio of the magnitudes

of Q and R (model and data error covariances) is

critical, since it largely determines how closely the

evolution of y follows that suggested by the dynamic

model (Q � R) or the data. The tuning of Q and R is a

crucial part of Kalman filter implementation; see

Grewal & Andrews (1993) for an excellent extended

discussion.

The concepts underlying the Kalman filter are now

implemented in several different ways (see for example

Grewal & Andrews, 1993; Evensen, 1994, 2003;

Kasibhatla et al., 2000; Reichle et al., 2002; Drécourt,

2003), including the following:

1. The linear Kalman filter (LKF), in which both u(y)

and h(y) are linear in y, can be shown to be an optimal

solution for appropriate linear problems.

2. The extended Kalman filter (EKF) applies for

nonlinear u(y) and h(y), by linearizing the covariance

propagation part of the analysis step (Eqn (7)), but not

the prediction step, at each point. This is the algorithm

sketched above.

3. The ensemble Kalman filter (EnKF) (Evensen,

1994, 2003) is appropriate for high-dimensional

problems such as data assimilation into atmospheric

and ocean models, where the error covariance matrix

for y is too large to store, let alone integrate forward.

The EnKF uses stochastic methods based on multiple

model runs to propagate the covariance matrix without

storing it. Also, the EnKF does not explicitly require the

Jacobian matrices u(y) and h(y), which can be difficult

to derive analytically and expensive to calculate

numerically. Reichle et al., (2002) sum marize the

differences between the EKF and the EnKF.

4. The Kalman smoother assimilates multitemporal

information to constrain yn at each time point, by

running both forward and backward in time (Todling,

2000). It produces an estimate of target variables at time

step n based on the entire record, rather than only the

record up to time step n. This gives the Kalman

smoother the attributes of a nonsequential method, as

data at all times are used together.

Adjoint methods. These form an additional group of

methods applicable to sequential problems. The

principle (le Dimet & Talagrand, 1986; Giering 2000)

is to update the target variables (including the model

state) by using measurements at nearby times such as

the interval between steps n and n1 1, and an estimate

of the gradient HyJ obtained by backward integration of

an ‘adjoint model’ over that interval. The target

variables are effectively the initial state variables for

integration of the model from step n to n1 1. This

approach underpins four-dimensional data

assimilation (4DVAR) methods for assimilating data

into atmospheric and oceanic circulation models on

weather and climate time scales (Chen & Lamb, 2000;

Park & Zupanski, 2003).

Discussion of model–data synthesis methods

Differences between nonsequential and sequential strategies.

Parameter estimation and data assimilation problems

tend to be amenable to solution by nonsequential and

sequential search strategies, respectively. However, this

is not an absolute correspondence: many problems can

be solved using either nonsequential or sequential

strategies.

The most important advantage for sequential

methods is the ability of the optimal state to differ

from that embodied in the model equations. This

requires that the evolving model state xn be included

among the target variables y. In principle, y can also

include xn in nonsequential methods but, since all time

steps are considered simultaneously, the size of the

problem is usually intractable. Sequential methods also

have the computational advantages that their size does

not grow with the length of the model integration, and

that they can easily handle incremental extensions to

time series observations.

The advantages of nonsequential methods come,

naturally, from their ability to treat all data at once. This

is a direct advantage in itself. It is, for example, difficult

for a sequential method to treat the impact of a datum

on a state variable some time in the past, as can occur

when, for example, signals are transported through the

atmosphere so that the model state at some time is only

observed later. This problem is often handled with the

Kalman smoother.

Model and data error structures. The noise terms in the

dynamic and observation models, Eqns (1) and (2), can

in principle be quite general in form, including biases,

drifts, temporal correlations, extreme outliers and so

on. Many extant methods take these noise terms to be

Gaussian with zero mean and no temporal correlation,

as assumed in Eqns (4)–(10). However, more general

error structures are very common, and the

development of methods for dealing with such errors

is an active area of current research. In the case of

biases, drifts and temporal correlations, a promising

approach is to introduce extra target variables to

represent these features of the model or data error.

Evensen (2003) showed how this approach can be used

to treat both temporal correlation and bias in the model
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error. Wang & Bentley (2002) introduced a target

variable representing the temporally correlated part of

the data error.

Nonsequential and sequential parameter estimation.

Although parameter estimation is typically carried out

with nonsequential strategies such as least-squares

fitting, there can be advantages in using sequential

methods such as Kalman filtering for parameter

estimation. The approach is to treat parameters p as

components of the target vector y (in addition to the

state variables x), with p governed by the dynamic

equation dp/dt5 0 (1noise) (Grewal & Andrews

1993). This means that the problem is almost always

nonlinear and must be solved with the EKF or EnKF.

Annan & Hargreaves (2004) show how this technique

can be used to estimate parameters in the Lorenz

system with chaotic dynamics. A potential advantage of

this approach is that parameters can drift through time

toward new values, in response to observations. This

offers a means for model–data synthesis to respond to

exogenous catastrophic events (such as fire, windthrow

or clearing) which suddenly change the parameters in a

terrestrial biosphere model, since exogenous changes in

parameters are the usual way that catastrophic events

are incorporated in the absence of a full dynamic model

for the processes governing the catastrophe.

Model–data synthesis: examples

The methods outlined above are being applied in

several fields relevant to terrestrial carbon observation.

The first major example is parameter estimation. Most

biogeochemical models contain parameters (p) deter-

mining photosynthetic capacities, light use efficiencies,

temperature and nutrient controls on photosynthesis

and respiration, pool turnover times and so on. It is

almost always necessary to choose p to optimize the fit

of the model to test data, usually obtained from

multiple study sites. Techniques for doing this range

from simple graphical fits (‘chi-by-eye’) to least-squares

fitting procedures based on Eqn (3) or other cost

functions.

A second example is provided by atmospheric

inversion methods for inferring the surface-atmosphere

fluxes of CO2 and other trace gases from atmospheric

composition observations. The data come from global

flask networks and continuous in situ analysers, upper-

air measurements from aircraft and tall towers, and

potentially in the future from remote sensing of

atmospheric composition. The observation model is a

model of global atmospheric transport. The basic

approach has been sketched in Eqns (4) and (5). There

is now a significant literature on this technique (Enting

et al., 1995; Ciais & Meijer, 1998; Enting, 1999a,b;

Rayner et al., 1999; Rayner, 2001; Schimel et al., 2001;

Enting, 2002; Gurney et al., 2002). In summary, atmo-

spheric inversions at global scale provide good con-

straints on total global sources and sinks, but

(presently) with very coarse spatial resolution (con-

tinental to hemispheric). In addition to global applica-

tions, atmospheric inversion methods have been

applied regionally (Gloor et al., 2001), in the atmo-

spheric boundary layer (Lloyd et al., 1996), and in

vegetation canopies (Raupach, 2001).

A third example, combining the previous two, is the

use of multiple constraints. This involves model–data

synthesis with the simultaneous use of multiple kinds

of observations (for example, atmospheric composition

measurements, remote sensing, eddy-covariance fluxes,

vegetation and soil stores, and hydrological data). This

approach has two advantages: first, different kinds of

observation constrain different processes. For example,

atmospheric composition measurements and eddy

fluxes directly determine net CO2 exchanges (net

ecosystem exchange, NEE) at large and small spatial

scales, respectively, while remote sensing provides

indirect constraints on gross exchanges (gross primary

production, GPP) through indices such as the normal-

ized difference vegetation index (NDVI). Second,

different observations have different resolutions in

space and time. Through assimilation into a terrestrial

biosphere model, the high space-time resolution of

environmental remote sensing can add space-time

texture to estimates of NEE from methods such as

atmospheric inversions or eddy-covariance fluxes.

Some difficulties must also be noted: for example,

handling data sources with quite different spatial and

temporal scales of measurement (discussed further in

‘Scale mismatches between measurements and mod-

els’), and also with very different sample numbers

(remotely sensed data can swamp in situ data with

realistic error specifications, because the former has a

factor of 103–106 more data points).

Applications of the multiple-constraint concept

include the combined use of atmospheric CO2 concen-

trations and surface data at continental scales (Wang &

Barrett, 2003; Wang & McGregor, 2003) and global

scales (Kaminski et al., 2001, 2002); use of genetic

algorithms to constrain terrestrial ecosystem models

of the global carbon cycle with multiple ecological

data (Barrett, 2002); and discriminating vegetation and

soil sources and sinks in forest canopies with concen-

tration, isotopic and physiological data (Styles et al.,

2002).

A fourth example deserves more space than is

available here: the use of data assimilation in atmo-

spheric and ocean circulation models. This is now
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well-developed and applied routinely in weather

forecasting. A variety of techniques are employed,

including ‘nudging’, three-dimensional and four-

dimensional variational data assimilation (3DVAR

and 4DVAR) based on adjoint methods, and use of

the ensemble Kalman filter. Recent reviews are pro-

vided by Chen & Lamb (2000) and Park & Zupanski

(2003).

Data characteristics: uncertainty in measurement

and representation

We have emphasized that data uncertainties affect not

only the predicted uncertainty of the eventual result of

a model–data synthesis process, but also the predicted

best estimate. This realization raises the challenge of

evaluating the uncertainty properties of the main kinds

of observation relevant to a TCOS, in forms directly

usable for model–data synthesis. This is a very large

goal, which embraces all categories of observation

identified at the beginning of ‘Model–data synthesis:

Methods’, and also a range of issues:

� The error magnitude sm for an observation zm,

inclusive of all error sources (in other words, the

diagonal elements ½Cov z�mm ¼ sm
2 of the covariance

matrix);

� The correlations [Cov z]mn/(smsn) among errors in

different observations, quantified by the off-diag-

onal elements of the covariance matrix;

� The temporal structure of the errors: whether they

are random in time or temporally correlated, and

the possible presence of unknown long-term drifts

or biases;

� The spatial structure of errors (random, slowly

varying or bias as for temporal structure);

� The error distribution: normal (Gaussian), log-

normal, skewed or the sum of multiple error sources

with different distributions, such as a small Gaus-

sian noise together with occasional large outliers

because of measurement corruption events;

� Possible mismatches between the spatial and tem-

poral averaging implicit in the model and the

measurements (the ‘scaling problem’);

� The separate contributions to all the above error

properties of measurement error (the distribution of

the measurements z around their true values) and

representation error (the distribution of the error in

the model representation of the measurement,

z5h(y)).

This challenge is too large to meet fully here. To make a

start, we consider (in the next four subsections) a

selection of observations from four categories of data:

remote sensing of land surface properties, atmospheric

composition measurements, direct flux measurements,

and direct measurements of carbon stores. The aim is to

make estimates of error properties for these categories

of measurement. The discussion does not address all of

the above issues, largely omitting questions of spatial

and temporal error structure. We present tables

indicating ranges for the diagonal elements ½Cov z�mm ¼
sm

2 of the error covariance matrix for measurement

error, and the qualitative behaviour of the correlations

which determine the off-diagonal elements. The entries

in these tables are mostly ‘expert judgements’ by the

authors and their colleagues, backed up by quantitative

evidence where possible. There is, of course, no claim

that our estimates are definitive; the intention is rather

to indicate the kinds of uncertainty information

required of observations for model–data synthesis

purposes. The tables characterize measurement errors

only; representation errors, which often exceed mea-

surement errors, are discussed separately in qualitative

terms only. The issue of scale mismatches between

measurements and models, which arises in all cases as

a significant contribution to representation error, is

treated generically in a fifth subsection ‘Scale mis-

matches between measurements and models’.

Remote sensing of land surface properties

The main satellite-borne remotely sensed data on land

surface properties come from two kinds of sensor, both

polar-orbiting to provide frequent global coverage:

moderate-spatial-resolution ( � 250–1000 m) and high-

temporal-resolution ( � 1 day repeat interval) sensors

such as AVHRR and MODIS; and high-spatial resolu-

tion ( � 10–30 m) and moderate-temporal-resolution

( � 16 day repeat interval) sensors such as SPOT and

LANDSAT. All these sensors provide multi-year re-

cords. One major application (among many) for the

AVHRR-MODIS family is assessment of vegetation

dynamics with indices such as NDVI (defined as

(NIR�Red)/(NIR1Red), where NIR and Red are

radiances in the near-infrared and visible red spectral

bands) and measures such as surface temperature.

Applications for the SPOT-LANDSAT family include

detection of land cover change and vegetation clearing

and regrowth. In all cases, the measurements are at-

sensor reflected radiances from the earth in several

spectral bands (5 for AVHRR, 37 for MODIS).

In using these forms of remote sensing data for

model–data synthesis applications, three kinds of error

need to be considered: (1) errors associated with the

measurement and spatial attribution of radiances at the

sensor; (2) errors in relating radiances at sensor to

M O D E L – D A T A S Y N T H E S I S I N T E R R E S T R I A L C A R B O N O B S E R VA T I O N 387

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 378–397



radiances at surface and (3) errors in relating radiances

at the surface to biophysical quantities represented in a

terrestrial biosphere model. The first of these is

measurement error, the third is representation error,

and the second can contribute to either depending on

how the problem is formulated.

Measurement error. The primary measurements are

radiances at the sensor, attributed to elements (pixels)

on the earth’s surface. Measurement errors arise from

sensor noise, calibration drift, orbital decay, and

incorrect geolocation. These errors are much more

serious for AVHRR (designed in the 1970s) than for

MODIS (designed in the 1990s with on-board

calibration).

Representation error. This is the error associated with the

model z5h(y) relating the measurements z (radiances)

to the target variables y (biophysical variables in the

terrestrial biosphere model, such as leaf chlorophyll

content, leaf or soil water status or leaf area index). In

principle, the observation model involves two

components. First, biophysical target variables (y) are

related to radiances at the earth’s surface (say zsurface),

through a model zsurface5hsurface(y). Examples are

relationships between NDVI and leaf and soil

properties (Tucker, 1979; Sellers, 1985; Sellers et al.,

1992; Myneni et al., 1995a,b; Lu et al., 2003).

Representation errors associated with this component

depend on the skill of the model zsurface5hsurface(y).

Second, the surface radiative properties are related to

radiances at the satellite-borne sensor (say zsensor)

through an atmospheric radiative transfer model (g),

which accounts for the effects of clouds, atmospheric

absorption and scattering, and the bidirectional

reflectance distribution function (BRDF) properties of

the surface. Thus, we have zsensor5g(zsurface, ancillary

data), where the ancillary data includes profiles of

temperature and radiatively active constituents in the

atmosphere. Errors in this component depend on the

skill of the model g and errors in the required ancillary

data.

In model–data synthesis, there is a choice about

whether to use sensor radiances (zsensor) or surface

radiances (zsurface) as the primary measurements. If

zsurface is used, then the observation model is

zsurface5hsurface(y) and it is necessary to infer

zsurface5g�1(zsensor, ancillary data) from the at-sensor

radiances and the atmospheric transfer model g. In this

case, g is effectively part of the measurement system

itself and its errors appear as measurement errors. On

the other hand, if zsensor is the primary set of

measurements, then the observation model becomes

zsensor5hsensor(y)5g(hsurface(y), ancillary data). The

model g is then part of the observation model, and its

errors appear as representation errors. New unknown

target variables may also appear through the ancillary

data, and it is necessary that these be estimated with

available observations.

For a semi-quantitative illustration of properties of

the error covariance matrix for some remote sensing

observations, we consider radiances at the surface

(zsurface) to be the observations, so that errors in the

radiative transfer model g form part of the errors in

zsurface and are treated as measurement error. As

examples we consider NDVI and surface temperature.

Table 1 shows some properties of measurement errors in

these quantities. This table takes account of several

considerations: first, errors in zsurface arise from sensor

noise, sensor calibration and geolocation (contributing to

error in zsensor), and from inaccurate cloud removal,

atmospheric correction or BRDF correction (contributing

to error in the radiative transfer model g). Many of these

errors are strongly positively correlated among different

spectral bands, especially in the visible and NIR. NDVI

is less sensitive to such errors than the band radiances

themselves, because it is based on a normalized

difference (an example of error cancellation through

correlation, and a reason for the popularity of NDVI).

Second, correlations between errors in NDVI and surface

temperature tend to be positive. For example, unmasked

sub-pixel cloud appears as low-NDVI and cold, causing

correlated negative outliers and thus a positive error

correlation between the two measurements. Finally, in

some cases, experimental estimates of the errors are

available. For example, comparison of several calibration

procedures for the short-wave AVHRR channels on the

NOAA-11 satellite revealed calibration discrepancies of

around 5% (Mitchell et al., 1996).

Table 1 describes measurement error only, and does

not include representation error reflecting uncertainty in

the relationship zsurface5hsurface(y) (the third of the three

error categories mentioned above). Estimates of

representation error can be gained, for example, from

the scatter in experimental tests of relationships between

at-surface radiance properties and biophysical variables

(for example, Lu et al., 2003). Usually, these

representation errors are comparable with or larger

than measurement errors. For example, NDVI saturates

at high leaf area index (3-4).

Atmospheric composition measurements

We consider (1) direct CO2 concentration measurements

from the global flask network and WMO Global

Atmosphere Watch (http://www.wmo.ch/web/arep/

gaw/gaw_home.html) stations with continuous CO2

monitoring and (2) efforts to measure CO2 with
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spaceborne remote sensing. Our discussion of measure-

ment and representation errors for these data sources is

based on the atmospheric inversion approach for

utilizing atmospheric composition data; see ‘Model–

data synthesis: methods and examples’.

Direct measurements. The first global flask network

developed from work by Keeling (1961) with several

nations later commencing sampling in their respective

regions. As of 2004, 23 laboratories from 15 nations

contribute flask and continuous in situ sampling data

from around 200 sites to international databases

(http://www.cmdl.noaa.gov/ccgg/globalview/co2/).

Large networks are maintained by the National Oceanic

and Atmosphere Administration Climate Monitoring

and Diagnostics Laboratory (NOAA-CMDL), Boulder,

CO, USA, and CSIRO Atmospheric Research (CSIRO-

GasLab), Melbourne, Australia. In the main, flask

samples are collected 2–4 times per month from fixed

sites, aircraft and ships, and opportunistically during

intensive experimental campaigns. Flasks are returned

to the central laboratories for automated analyses, which

provide concentrations of a number of atmospheric

constituents. The analytical procedure includes mea-

surements against an international standard and

frequent comparisons with air standards, and actual

samples, exchanged between laboratories (Masarie et al.,

2001).

Continuous in situ analysers provide records at

higher precisions and temporal densities than are

available from the flask networks and are usually

located at baseline stations in remote locations. With

both flask and in situ monitoring, there has been ongoing

improvement in precision and in the accuracy and

propagation of the international standards (Francey et

al., 2001).

Spaceborne measurements. Remote sensing of

atmospheric composition is gradually becoming a

reality. Simulations show that satellite observations

improve atmospheric-inverse estimates of carbon fluxes

by a factor of up to ten relative to the surface (flask and

baseline) networks, because of vastly improved

coverage in time and space, albeit with increased

error for each measurement (Rayner & O’Brien, 2001;

Rayner et al., 2002). Efforts are underway on three

fronts: first, proof-of-concept studies have already been

undertaken with existing space-based radiometers such

as TOVS and AVHRR (Chedin et al., 2002, 2003a,b).

Despite limited spectral resolution and unwanted

absorption from other atmospheric constituents,

signatures of seasonal cycles and trends in CO2 and

other greenhouse gases (N2O and CO) have been

extracted at coarse space-time resolution (151� 151,

mid-troposphere, monthly). Second, current missions

undertaken for other purposes, such as the Advanced

Infra-red Sounder (AIRS) and Sciamachy instruments,

will likely provide near-term improvements in

measuring aspects of the atmospheric CO2 distribution.

Finally, future purpose-built instruments, such as the

NASA Orbiting Carbon Observatory (OCO, Crisp et al.,

2004), CARBOSAT (European Space Agency) and

GOSAT (Japan), should provide dramatic improve-

ments in coverage and precision.

Measurement error. Table 2 gives estimates of

measurement error for CO2 measurements from

flasks, continuous in situ analysers, and AVHRR

(Chedin, 2003b). Errors in international CO2 databases

from near-surface measurements include errors in the

assignment and propagation of CO2-in-air standards on

the WMO mole fraction scale, biases associated with

different CO2 measurement methods, flask storage

effects, and other factors limiting the repeatability of

measurements with the same system. These errors

have different temporal characteristics. For example,

both flask and continuous measurements from CSIRO

share a current calibration bias of �0.1 � 0.05 ppm

Table 1 Indicative properties of the error covariance matrix for remote sensing observations of NDVI and surface temperature,

describing measurement error only and omitting representation error

Observation (zm) Units Typical range Typical error (rm) Error distribution Error correlations

NDVI5 (NIR�Red)/

(NIR1Red)

– 0.1–1 0.1 (AVHRR) Errors in NDVI and

surface temperature

are probably highly

positively correlated

because of negative

outliers in each

associated with

undetected cloud

0.05 (MODIS)

Surface temperature degree K 250–350 Land: 2 (AVHRR) Normal with negative

outliers because of

undetected cloud

1 (MODIS)

Ocean: 0.2 (AVHRR)

0.1 (MODIS)

NDVI, normalized difference vegetation index.

9>>>>>>>>=
>>>>>>>>;

9>>>>>>>>>>=
>>>>>>>>>>;
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relative to NOAA-CMDL. For some laboratories with

smaller networks, WMO round-robin intercomparisons

in 1993, 1997 and 2001 indicate a larger, but improving

range of calibration uncertainty. There are also diff-

erences between flask and in situ measurements from

within one laboratory that exhibit slowly varying

offsets. Such errors are likely to be highly correlated

over long time periods. If not included in the inver-

sion procedure they can invalidate aspects of the result,

as demonstrated by Rayner et al. (2002) in their

Observing System Simulation Experiment of remotely-

sensed CO2. Provided the structure of such errors can

be predicted, the inversion can cope with them (Law et

al., 2003a, b).

Representation error. Current atmospheric inversion

studies using atmospheric concentration data generally

ascribe much larger errors to the measurements than the

aggregate of the measurement errors shown in Table 2.

This is partly because of the simple assumption of

Gaussian uncorrelated noise used in most existing stu-

dies, but also because the contributions of the represen-

tation error are large. Representation errors arise in this

context from the inability of the atmospheric transport

model to simulate point observations in space, either

because of systematic errors in model formulation or the

implicit averaging in its grid representation. An analo-

gous temporal representation error arises when flask

measurements (actually grab samples in time) are inter-

preted as longer-term means; see ‘Scale mismatches

between measurements and models’ for discussion. A

further contribution to representation errors for most

atmospheric inversion studies to date has been the

projection of possible source distributions to a restricted

subspace, usually by dividing the earth into a number of

large regions. This is done both for computational

reasons and to reduce the error amplification arising

from under-determined problems. Errors in the prescri-

ption of flux distributions within these regions give rise

to a so-called aggregation error, described and quanti-

fied by Kaminski et al. (2001). This error can be avoided

by using adjoint representations of atmospheric trans-

port that do not require aggregation (Rodenbeck et al., 2003a,b).

There are few experiments where representation

errors can be evaluated, since this requires

simultaneous knowledge of sources and atmospheric

transport. However, one can use the range of model

simulations as a guide (e.g. Law et al., 1996; Gurney et

al., 2003). Since representation errors are completely

dependent on the inversion process (especially the

atmospheric transport model) rather than the

measurements themselves, we do not attempt to

quantify them in Table 2. T
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Direct flux measurements at intensive study sites

The global FluxNet network (Baldocchi et al., 2001,

Falge et al., 2002a, b) includes over 200 sites where

tower-based eddy covariance measurements are made

of the land-air fluxes of sensible heat, latent heat, CO2

and other entities, at sub-diurnal (typically half-hourly)

temporal resolution. Many other meteorological vari-

ables are measured, including solar and net radiation,

ground heat flux and precipitation. Many sites include

measurements of other biogeochemical processes, such

as soil respiration by chamber methods. Most measure-

ments at these sites are at the patch scale, applying to a

nominally homogeneous land unit. The extent of

horizontal averaging varies with the measurement

(for example, a narrow along-wind ellipse of order

1� 0.1 km2 for eddy-covariance fluxes, a circle with

radius of order 10 m for a net radiometer mounted 10 m

above a forest, and a chamber footprint of order 1 m2

for soil respiration). A great strength of intensive flux

study sites is that independent checks on the uncer-

tainty of the measurements are possible through checks

on the closure of the energy and water balances.

Measurement error. Table 3 shows some estimated error

properties for the above measurements. Several

systematic errors are known to influence eddy-flux

measurements, including high-frequency and low-

frequency flux losses, storage in the air column below

the measurement height, intermittency of nocturnal

turbulence, and ‘rectification’ because of nocturnal

cold-air drainage of air rich in respired CO2 towards

low-lying areas, causing systematic advection errors

(Wofsy et al., 1993). Most of these problems are much

more severe at night than by day. Experimental

techniques and analysis procedures (especially the use

of longer averaging periods of up to several hours to

include fluxes transported by large eddies of the scale

of the entire atmospheric boundary layer) are

progressively resolving these issues, with more

success to date for daytime than nocturnal fluxes

(Finnigan et al., 2003). Relative hourly accuracies of

order 10% represent the state of the art for daytime

fluxes, attainable with excellent technique; however,

errors of up to 30% are common. For nocturnal fluxes,

eddy covariance measurements become unreliable in

light wind conditions, that is, much of the time at night

(Goulden et al., 1996). Errors include biases associated

mainly with the above systematic nocturnal effects.

Carbon flux measurements from intensive study

sites are often aggregated to time-averaged (typically

monthly to multi-annual) measures of primary

production for the patch under study: GPP5 [net

assimilation]; net primary productivity (NPP)5

[GPP�autotrophic respiration]; net ecosystem produ-

ctivity (NEP)5 [NPP�heterotrophic respiration]; net

biome productivity (NBP)5 [NEP�disturbance flux].

All these have units gC m�2 yr�1 and are positive for

carbon uptake into the biosphere. The total exchange

between the terrestrial biosphere and the atmosphere is

NBP. The disturbance fluxes in NBP include grazing,

harvest, and catastrophic events (fire, windthrow,

clearing). If these processes do not occur on an

intensive study site, an eddy-covariance CO2 flux

(when aggregated in time) yields an estimate of NEP.

Table 3 also shows estimated properties of error

covariances for these time-aggregated productivity

estimates. The uncertainty in NEP estimates is much

higher than for hourly CO2 flux estimates, because of

the difficulties mentioned above. Comparisons between

eddy-covariance and other means of measuring NEP

suggest typical uncertainties of order 20 to 50%, with

the lower end of this range being attainable over

actively growing ecosystems where NPP is much larger

than heterotrophic respiration and NEP is relatively

large. This range is also likely to be representative of

GPP and NPP estimates. Uncertainties in NBP at patch

scale are very much higher (in fact it is arguable that

NBP cannot be defined at patch scale).

Representation error. Fluxes are almost always directly

represented in terrestrial biosphere models, so

representation errors are not an issue for direct flux

measurements at the patch scale. However, the spatial

aggregation issue (upscaling flux measurements from

intensive study sites to yield estimates of fluxes or pro-

ductivities over grid cells, large regions or continents) is

a significant source of representation error. It is not

usually possible to upscale by area weighting of patch-

scale estimates without conditioning from other

measurements and models, because of heterogeneity

in landscapes and disturbance patterns; see ‘Scale

mismatches between measurements and models’ for

further discussion. A particular example of this issue is

that patch-scale measurements (including fluxes) are

often made at unmanaged or undisturbed sites, creating

a bias with respect to the landscape as a whole.

Measurements of carbon stores in vegetation and soils

Terrestrial biospheric carbon pools include leaves,

wood above and below ground, fine roots, coarse litter,

fine litter and soil carbon; the soil carbon is often

partitioned into fractions with different biochemical

properties or turnover times, such as microbial, humic

and inert. In situ measurements or estimates of these

pools are available from vegetation and soil surveys,
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long-term observations at ecological study sites, and

national forest inventories.

Measurement errors. Table 4 shows some estimated error

properties for these measurements. Large errors are

associated with the below-ground pools. As for our

error estimates for flux measurements at intensive study

sites (Table 3), these estimates apply to measurement

errors at the spatial scale of individual patches.

Representation errors. At first sight, representation errors

for measurements of carbon stores are not a major issue

at patch scales because carbon stores are directly

represented in terrestrial biosphere models (as for flux

measurements). However, representation errors arise in

assigning measurements of carbon pools to their model

counterparts (Barrett, 2002). For instance, litter is often

measured in physically defined compartments such as

fine litter and coarse woody debris, but represented in

models in biogeochemical compartments such as

metabolic and structural litter. Spatial aggregation of

measurements for upscaling and incorporation into

spatially coarse models is also a representation issue, as

for direct flux measurements–for example, the bias

introduced by the tendency for patch-scale

measurements to be made at undisturbed sites.

Scale mismatches between measurements and models

The examples in the above four subsections all high-

light the problem that measurements are almost always

made at a different scale (that is, with a different spatial

and temporal averaging operator) to that used in the

dynamic model. In its spatial form, this problem arises

when the measurements apply to particular points or

homogeneous land elements (for example, eddy flux

measurements or in situ measurements of carbon

stores) while the model represents an aggregated set

of land elements by a single set of state variables (for

example, for a grid cell in a coarse spatial model). A

temporal version of the same problem arises when the

measurements are intermittent (for example, satellite

measurements at time of overpass, flask sampling of

atmospheric composition, or occasional in situ measure-

ments of carbon stores).

This ‘scaling problem’ is so prevalent that it is worth

a brief discussion in the context of model–data

synthesis. Suppose that the model is defined at ‘coarse’

space-time scales by physical parameterizations that

demand some (usually implicit) space-time averaging

of all variables, and by choices of space-time grids,

which are compatible with these averaging require-

ments. Since it is necessary that all variables in both the

dynamic and observation models be averaged in a

consistent way throughout, the observation model can

be written as zcoarse5h(ycoarse)1noise, where the

measurements (z) and target variables (y) are identified

as applying at coarse (model) scale. However, the actual

measurements are often available at some much finer

scale zfine, and may also be sparsely sampled. The

variability in an ensemble of measurements zfine (which

cover the coarse scale) is defined by a covariance Rfine,

the integral of the cospectrum of z between the fine and

coarse scales. The problem is to find a relationship

between zfine and zcoarse so that zfine can be used as an

observable in the model–data synthesis process. There

are several generic ways to do this.

A first, very simple option is to take the fine scale

measurements (zfine) as a noisy sample of zcoarse, with

the variability in zfine treated as a contribution to the

representation error. In this case, the observation

model becomes zfine5h(ycoarse)1 [measurement error

in zfine]1 [representation error in h]1 [noise with

covariance Rfine], where the last noise term accounts

for unresolved space-time variability in zfine. This is

often the best option if there is no other information

Table 4 Indicative properties of the error covariance matrix for some measurements of carbon stores in vegetation and soils,

describing measurement error only and omitting representation error

Observation (zm) Units

Typical

range

Typical relative

error (rm/zm)

(%) Error distribution Error correlations

Leaf carbon kgC m�2 0–1 10–30

Log-normal

(normal if many

measurements are

aggregated)

At an individual site, errors

are uncorrelated because

measurements are made

with different techniques

Wood carbon

(above and below ground)

kgC m�2 0–50 15–50

Fine root carbon kgC m�2 0–1 30–100

Coarse litter

(including standing dead)

kgC m�2 0–10 30–100

Fine litter kgC m�2 0–0.5 10–30

Soil carbon (to 1 m) kgC m�2 0 to 4100 30–100
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available about the sources of variability in zfine, as for

example with flask measurements of atmospheric

composition or soil samples taken from imprecisely

known locations.

A second option is that the fine scale measurements

(zfine) can be aggregated directly to find zcoarse5

Sw(afine)zfine, where w is a set of weights determined

by ancillary fine-scale data afine. For example, reflected

radiances can be aggregated with area weighting, and

in situ soil or biomass carbon measurements can be

aggregated approximately using a weighting based on

soil and microclimate attributes that can be inferred

from fine-scale digital elevation maps. The inferred

zcoarse becomes a pseudo-observation to be utilized

through an observation model zcoarse5h(ycoarse)

1noise, where the noise term includes errors in zfine,

errors in the weighting model for zcoarse, and errors in

afine. This is a good option when plenty of fine-scale

measurements are available within each coarse-scale

element, for example from remote sensing.

A third option is to introduce a fine-scale process or

empirical model zfine5g(xcoarse, afine) which relates the

fine-scale observations to coarse-scale state variables

(which here act as boundary conditions) and additional

fine-scale ancillary data such as topography and land

surface attributes from remote sensing. The model g

then becomes the observation model for model–data

synthesis. This is often the best option if the fine-scale

data are sparse, expensive and of high information

content. For example, for eddy flux measurements, g

may be a fine-scale model of land-air exchanges and

microclimates in inhomogeneous or hilly terrain, or a

neural-network-based model of flux distributions con-

ditioned with available ancillary data afine. It is likely

that the development of g involves substantial effort, so

this is not an option to be taken lightly.

This brief discussion has focussed on the observa-

tional issue of scale mismatches between measurements

and models, and their implications for the observation

model z5h(y)1noise, Eqn (2). Another form of the

‘scaling problem’ arises for the dynamic model

dx/dt5 f(x, u, p)1noise, Eqn (1), in translating process

knowledge about the model function f between scales.

Typically f is a set of phenomenological equations for

fluxes contributing to changes in stores x, which are

valid only for certain (often implicit) spatial and

temporal resolutions. For example, the Darcy law

describes water movement in soil columns but not

catchments or heterogeneous regions described by

aggregated state variables. Translation of these phe-

nomenological equations from fine to coarse scales is

possible by treating the fine-scale variability statisti-

cally, but one result is that the fine-scale and coarse-

scale equations are different (for instance, biased with

respect to each other) because of interactions between

fine-scale variability and nonlinearity in the fine-scale

function f(x, u, p).

Summary and conclusions

In the context of terrestrial carbon observation, we have

focussed on model–data synthesis and its implications

for data, especially the specification of data uncertainty.

Our analysis has been framed by an initial statement of

the purposes and attributes of a TCOS. The purposes

for a TCOS are congruent with those of a ‘Global Earth

Observation System of Systems’, with specific contribu-

tions occurring in the areas of weather and climate

prediction, water resource management, ecosystem

management, agricultural sustainability, combating

desertification and monitoring biodiversity. Among

the major attributes of a TCOS are scientific credibility,

consistency with global budgets, adequate spatial

and temporal resolution, observation of sufficient

ranges of entities and processes, and the requirement

to quantify uncertainty. These attributes demand a

model–data synthesis approach because of the need

to combine a range of observations and models to

determine the terrestrial stores and fluxes of carbon

and related entities (water, nutrients, energy), and

the ways that they are influenced by human

management.

Data for model–data synthesis approaches come

in two forms, observations and prior knowledge (for

instance constraints on model parameters). For

both, uncertainty estimates have an influence on the

outcome of the synthesis process comparable with that

of the data values themselves. Data uncertainties affect

not only the predicted uncertainty of the eventual result,

but also the predicted best estimate. Therefore, there is

an urgent need for soundly based uncertainty specifica-

tion, based initially on an error covariance matrix.

In this paper, we have made semi-quantitative

estimates of some of the main properties of the

covariance matrix for measurement error, for four kinds

of data central to terrestrial carbon observation: remote

sensing of land surface properties, atmospheric compo-

sition measurements, direct flux measurements, and

measurements of carbon stores. Critical error properties

include (1) the diagonal elements ½Cov z�mm ¼ sm
2of the

measurement error covariance matrix (where sm is the

error magnitude for an observation zm); (2) the correla-

tions between different observations, quantified by

the off-diagonal elements of the covariance matrix; (3)

the temporal and (4) the spatial structure of errors,

(5) the error distribution, (6) possible scale mismatches

between measurements and models and (7) the repre-

sentation of the observations in the model.
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Finally, we note that there is a need not only to

quantify uncertainty, but also to reduce uncertainty in

our estimates. The approach outlined here contributes

to this goal, by providing a framework to formalize the

manner in which we constrain uncertainty. The critical

step is to better understand the error structures of both

the priors and the observations, leading to improved

focus on the major sources of uncertainty.
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