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[1] We describe results of a project known as OptIC (Optimisation InterComparison) for
comparison of parameter estimation methods in terrestrial biogeochemical models. A
highly simplified test model was used to generate pseudo-data to which noise with
different characteristics was added. Participants in the OptIC project were asked to
estimate the model parameters used to generate this data, and to predict model variables
into the future. Ten participants contributed results using one of the following methods:
Levenberg-Marquardt, adjoint, Kalman filter, Markov chain Monte Carlo and genetic
algorithm. Methods differed in how they locate the minimum (gradient-descent or global
search), how observations are processed (all at once sequentially), or the number of
iterations used, or assumptions about the statistics (some methods assume Gaussian
probability density functions; others do not). We found the different methods equally
successful at estimating the parameters in our application. The biggest variation in
parameter estimates arose from the choice of cost function, not the choice of optimization
method. Relatively poor results were obtained when the model-data mismatch in the cost
function included weights that were instantaneously dependent on noisy observations.
This was the case even when the magnitude of residuals varied with the magnitude of
observations. Missing data caused estimates to be more scattered, and the uncertainty of
predictions increased correspondingly. All methods gave biased results when the
noise was temporally correlated or non-Gaussian, or when incorrect model forcing was
used. Our results highlight the need for care in choosing the error model in any
optimization.

Citation: Trudinger, C. M., et al. (2007), OptIC project: An intercomparison of optimization techniques for parameter estimation in

terrestrial biogeochemical models, J. Geophys. Res., 112, G02027, doi:10.1029/2006JG000367.

1. Introduction

[2] The roles of terrestrial and oceanic biogeochemical
processes in the climate system and the earth system are
now well recognized [Steffen et al., 2004; Field and
Raupach, 2004]. There is a corresponding recognition
of the need to include these processes in climate and
earth system models, especially for long-term (multian-
nual and greater) simulations. Data assimilation into
models has been under intensive development in meteo-
rological and ocean forecasting since the 1980s, and has
led to major improvements in forecast ability. Increasingly,
data assimilation and parameter estimation methods (collec-
tively termed model-data synthesis) are being used to con-
strain models of biogeochemical cycles (both in stand-alone
form and as components of climate system models) with
multiple sources of data [Raupach et al., 2005]. Various
methods have been used recently for parameter estimation in
biogeochemical models, including gradient methods [Wang
et al., 2001; Rayner et al., 2005], Kalman filter [Williams et
al., 2005], genetic algorithm [Barrett, 2002; Roxburgh et al.,
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2006] and global search [Braswell et al., 2005; Knorr and
Kattge, 2005]. These are examples of parameter estimation in
terrestrial carbon models with stock, flux and/or atmospheric
CO2 concentration measurements. There are also many
applications in other areas of biogeochemistry and ecology,
such as marine ecosystem models [Losa et al., 2004].
[3] Different parameter estimation methods use different

assumptions, and have different strengths and weaknesses.
The OptIC project was designed to comparatively evalu-
ate several methods for parameter estimation in biogeo-
chemical models, with focus on the following: (1) ability
to handle data inadequacies such as noise, correlations
and gaps; (2) ways to optimize the model-data synthesis
process in the absence of good error specifications for the
data; (3) ways to handle multiple data sources with quite
different properties (such as sampling interval, temporal
averaging properties and error structures); (4) coping
with issues like the observability of parameters (i.e.,
how well they can be inferred from the observations),
including collinearity (also known as exchangeability or
equifinality) where two or more parameters have a similar
effect on observations and are therefore difficult to
distinguish [Aalderlink and Jovin, 1997]; and (5) uncer-
tainty analysis.
[4] The OptIC project was initially carried out between

September and December 2005, and was open to anyone
who wished to be involved. Participants were provided with
pseudo data from a highly simplified test model, to which
noise had been added, and they were asked to use the
parameter estimation method of their choice to estimate the
model parameters used to generate the data. There were
21 experiments with different model parameters and/or
types of noise (from simple uncorrelated Gaussian noise to
correlated noise, random drifts, noise from various distribu-
tions, missing data and incorrect forcing). Ten participants
submitted results, with some submitting more than one set of
results (generally with variations of the same method). This
paper describes the model, experiments and approach taken
in the OptIC project, and analysis of the results. More
information about the OptIC project is available at http://
www.globalcarbonproject.org/ACTIVITIES/OptIC.htm
including model code, data sets and results.
[5] The outline of this paper is as follows. In section 2 we

will describe the OptIC project, including the model,
approach, noise types, experiments and optimization methods
used. Section 3 gives the results. Discussion is given in
section 4 and summary in section 5. The forcing function used
in the model is described in Appendix A, and the optimization
methods used by participants are described in Appendix B.

2. OptIC Project

2.1. OptIC Model

[6] The test model used in the OptIC project is a highly
simplified representation of the carbon dynamics in a
terrestrial biosphere model (TBM), with two state variables
corresponding conceptually to stores of living biomass
carbon (x1) and litter and soil carbon (x2). These variables
are governed by the equations

dx1

dt
¼ F tð Þ x1

p1 þ x1

� �
x2

p2 þ x2

� �
� k1x1 þ s0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Net Primary Production NPPð Þ
|{z}
Litterfall

|{z}
Seed

production

ð1Þ

dx2

dt
¼ k1x1|{z}

Litterfall

� k2x2|{z}
Heterotrophic
respiration

; ð2Þ

where F(t) is a forcing term describing input into the
biomass store x1 by net primary production (NPP), the flux
of carbon into biomass by growth; p1 and p2 are scales for
the limitation of production by lack of x1 and x2,
respectively; k1 and k2 are rate constants for the decay of
x1 and x2, respectively; and s0 is a ‘‘seed production’’ term
for x1.
[7] This test model is not intended to be an actual TBM

but rather a simplified version of a TBM with enough of the
mathematical properties of a real TBM to answer the
questions posed in the OptIC objectives. These properties
include (1) nonlinearity, through the form of the NPP term;
(2) multiple stores (here two); and (3) data streams giving
information about the stores or fluxes (such as NPP) but not
directly about the parameters, which must be estimated.
[8] The OptIC model is like an actual TBM in the

following sense [Raupach, 2007]. All living biomass carbon
(leaf, wood, root) is lumped into a single store x1, and all
litter and soil carbon into a single store x2. These are
respectively governed by equations of the form dx1/dt =
(NPP) � (litterfall) and dx2/dt = (litterfall) � (heterotrophic
respiration). The flux terms on each right hand side are
identified in equations (1) and (2) (except for seed produc-
tion, which is discussed shortly). Litterfall is parameterized
as a flux k1x1 which is an outflow from x1 and an inflow to
x2, where k1 is a rate constant. Likewise, heterotrophic
respiration is parameterized as an outflow flux k2x2 from
the x2 pool. NPP depends on the availability of essential
resources (light, water and nutrients) and also on the
biomass invested in organs for resource acquisition (leaves
for light, roots for water and nutrients). The light and water
resources are together represented by a forcing term F(t)
equal to the NPP under given light and water inputs, without
limitation by either lack of biomass investment in resource-
gathering organs or nutrient availability. The time depen-
dence in F(t) accounts for fluctuating availability of light
and water through variation in weather and climate. The
actual NPP is less than F(t) because of lack of biomass
investment in resource-gathering organs and lack of
nutrients, described respectively by the factors x1/(p1 + x1)
and x2/(p2 + x2) (of Michaelis-Menten form). To account for
nutrient limitation, x2 (litter and soil carbon) is used rather
than a soil nutrient store, since these two stores tend to vary
together. We consider observations of x1 and x2, which can
be seen as surrogates for remote sensing data on biomass
(such as NDVI-based estimates of green leaf area index)
and in situ store measurements (such as soil carbon).
[9] The parameter s0 is a small ‘‘seed production’’ term

for x1. It represents growth of biomass from seed, assumed
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(unrealistically) to be a constant growth flux independent of
x1, x2 and external conditions. It is included for the
following reason: if s0 is absent (s0 = 0), then ‘‘extinction’’
of the test model biosphere is possible because (x1, x2) = (0, 0)
is a stable equilibrium solution of equations (1) and (2). This
does not occur if s0 > 0 [Raupach, 2007]. Throughout, the
forcing term F(t) is assumed to be externally specified and is
supplied to participants. It is created such that ln F(t) is an
AR(1) random process (an autoregressive random process
with a memory of one time step; see Appendix A).
[10] The test model has five parameters: p1, p2, k1, k2

and s0. Figure 1 shows the behavior of the model with
‘‘reference’’ parameter choices p1 = 1, p2 = 1, k1 = 0.2,
k2 = 0.1, s0 = 0.01, and a reference forcing function F(t)
as described in Appendix A. Despite the test model being
quite simple in form, it has some subtle properties as a
dynamical system [Raupach, 2007]. For particular ranges
of parameter values the model exhibits two stable states, and
flips between ‘‘active’’ and ‘‘dormant’’ basins of attraction
when triggered by the forcing.

2.2. Approach

[11] The OptIC project involved the estimation of opti-
mum or minimum-error values for four parameters (p1, p2,
k1, k2) in the test model (s0 was set throughout to 0.01),
using artificially generated data from a forward run of the
model in which these parameters were assigned ‘‘true’’
values unknown to participants. The time series ((x1(t),
x2(t)) from this forward run were treated as observations
for the parameter estimation, but to mimic real data, they
were subjected to various kinds of degradation (noise,
correlations, drifts, gaps) before being supplied to partic-
ipants. Thus the ‘‘observations’’ are z1(t) = x1(t) + noise, and
z2(t) = x2(t) + noise. The observation series could contain
missing values, possibly representing a large fraction of the
data. In two cases, the forcing was degraded to some extent.
[12] Participants in the intercomparison were given

Fortran90 code for a forward run of the test model plus
an example driver file for this code and corresponding
output (to confirm implementation of the forward model).
For each experiment they received data sets of the forcing,
F(t), and noisy observations z1(t) and z2(t). They were told
that true parameters would lie within known ‘‘prior’’ ranges
shown in Table 1. They did not know what type of noise
was added in each case, but were given a list of possibilities

(see section 2.3), as well as Fortran90 code to generate
these noise types for use in testing their method.
[13] An optimization process generally involves the min-

imization of some objective or cost function describing the
mismatch between simulated and observed quantities.
Optionally a term involving departures of model parameters
from prior values may be included. Both types of mismatch
must be weighted according to our confidence in the
observations, the model and our prior knowledge. In OptIC
it was up to participants to choose the form of their cost
function, including weights, as well as any additional
information required by their optimization method, such
as initial parameter values or uncertainties, initial values for
x1 and x2 or how to treat negative observations.
[14] Participants were asked to submit their best estimates

of the parameters, and, if possible, the parameter covariance
matrix, for each experiment. The forcing time series was
specified for 12,000 time steps, but the noisy observations
were available only for the first 10,000 time steps. Partic-
ipants were asked to calculate x1(t) and x2(t) for the full
12,000 time steps, using their best estimates of the param-
eters and the given forcing F(t) for each experiment. The
last 2000 time steps were to test how differences in
parameter estimates affect predictions of x1 and x2 when
there is no data for assimilation.

2.3. Types of Observation Noise

[15] Below is a list of the types of noise that were added
to the data. In each experiment the noise properties of z2
were the same as those of z1 (but with different measure of
spread, s). In the following, yi is the uncorrupted observa-
tion (in our case yi = x1,i or x2,i), zi is the observation with
noise added, and wi is a Gaussian random number with zero
mean and unit variance. In most cases the noise added to the
observations has zero mean.
[16] 1. Gaussian random noise with constant standard

deviation s was generated using

zi ¼ yi þ swi: ð3Þ

[17] 2. Gaussian random noise with standard deviation
syi (proportional to signal yi) was generated using

zi ¼ yi 1þ swið Þ: ð4Þ

Figure 1. Test model behavior with reference parameter choices p1 = 1, p2 = 1, k1 = 0.2, k2 = 0.1, s0 =
0.01. Forcing function F(t) is log-Markovian with p0 = 1, sm = 0.5, Tm = 10 Dt, and discretization
interval Dt = 1 (see text).
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[18] 3. Random noise with lognormal (skewed) distribu-
tion added to signal used

zi ¼ yi þ exp swið Þ � exp 0:5s2
� 	

: ð5Þ

[19] The last term is the population mean of the noise
term exp(swi), which is subtracted to give an unbiased
(zero-mean) overall noise term.
[20] 4. Random noise with lognormal distribution multi-

plied by signal used

zi ¼ yi exp swið Þ � yi exp 0:5s2
� 	

� 1

 �

: ð6Þ

[21] The noise population mean, the last term, is sub-
tracted to give an unbiased overall noise.
[22] 5. For Gaussian random noise with a time-invariant

correlation between noise in z1 and z2 at each time instant, we
reversed the prewhitening procedure described by Rodgers
[2000, Appendix C]. For a given covariance matrix C,
we multiplied a vector of random normal deviates with
variance 1 by a matrix X where C = XTX. X is not
unique and we use the Cholesky decomposition (Press et
al., 1986) for efficiency.
[23] 6. Noise correlated in time (Markov sequence) used

zi ¼ yi þ mi

mi ¼ ami�1 þ bsmwi with a ¼ exp �Dt=Tmð Þ; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p �
;

ð7Þ

where sm is the standard deviation of the Markov sequence
and Tm is its integral timescale. This is the timescale over
which the noise is temporally correlated. The above is
similar to generation of the forcing (Appendix A).
[24] 7. Gaussian random noise plus drifts of different

magnitudes, resetting to zero at random intervals (mimick-
ing calibration drifts) was generated using

zi ¼ yi þ snwn;i þ z i
with z i ¼ z i�1 þ k if H pd � wr;i

� 	
¼ 0

and z i ¼ 0; k ¼ sdwd;i if H pd � wr;i

� 	
¼ 1;

ð8Þ

where z i is the drift part of the noise, H(x) is the Heaviside
step function (H(x) = 0 for x < 0 and H(x) = 1 for x > 0), pd
is the (small) probability of a resetting of the drift to zero,
wn,i, wd,i and wr,i are Gaussian random numbers with zero
mean and unit variance, sd is the standard deviation of the
zero-mean Gaussian distribution from which drift rate is
drawn, and sn is the standard deviation of the Gaussian

random noise. The drift rate k was held constant except for
occasional resets.

2.4. Experiments

[25] There were 21 experiments in total. The project
began with 16 experiments, but a further 5 experiments
were added after some initial analysis of results. Eleven
experiments (denoted A1 through A11) involved the same
set of parameter values, initial values and true forcing time
series, but different types of noise. Participants were told
that experiments A1�A11 had the same parameters, but
were asked to treat these as individual experiments, to give
the best indication of how the different types of error
influence the solution. There were also 10 experiments for
which participants were told that each involved a different
set of parameter values, a different forcing time series F(t),
and different types of noise imposed on the data. In reality,
six of these experiments (B1�B6) had identical parameters
with different noise types. The forcing time series for these
six experiments was calculated with the same forcing
parameters, but with different random seed terms. The
remaining four experiments (C1�C4) had different model
and forcing parameters. Tables 2 and 3 list the true parameter
values and noise types for the 21OptIC experiments. Figure 2
shows the noisy observations and true values of x1 and x2 for
500 time steps of each experiment. Parameter sets 5 and 6
(used in Experiments C3 and C4, respectively) show dual-
mode behavior. Parameter sets 3 and 4 (used in Experiments
C1 and C2, respectively) have relatively large x1 and x2
relative to p1 and p2 which may affect the observability of
these parameters. Note that we generated noisy observations
over 14,000 time steps then discarded observations from the
first 2000 time steps to remove the effect of the choice of
initial x1 and x2. Experiment A7 noise was Gaussian + drifts,
and discarding the first 2000 time steps for this experiment
left the noisy observations in the middle of a relatively large
drift at the new initial time (Figure 2). This is a realistic
situation as calibration might well be most uncertain farther
back in time.
[26] Experiments A10 and A11 had the same noisy

observations as A1, so these are not shown again in
Figure 2. These two cases were supplied with forcing that
had been degraded, and this forcing is shown in Figure 3.
In both cases the supplied forcing was generated from the
true forcing by applying a block running mean, then
adding Gaussian noise and noise correlated in time (noise
type 6). The error in the forcing for Experiment A10 was
moderate and for Experiment A11 was severe. Figure 3
also shows x1 and x2 calculated with the true and incorrect
forcing, as an indication of how sensitive the model is to the

Table 1. Prior Ranges for Parameters

Parameter Minimum Value Maximum Value

p1 0.5 5
p2 0.5 5
k1 0.03 0.9
k2 0.01 0.12
s0

a 0.01 0.01
aParameter s0 is fixed at 0.01.

Table 2. Values of the True Parameters for the Six Parameter Sets

Used in the OptIC Experiments

Parameter Set Experiments p1 p2 k1 k2

1 A1–A11 1.04 1.35 0.23 0.08
2 B1–B6 2.44 2.45 0.11 0.031
3 C1 2.44 2.45 0.11 0.011
4 C2 0.77 2.73 0.033 0.025
5 C3 1.14 1.55 0.23 0.11
6 C4 4.6 1.45 0.63 0.011
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forcing (and therefore how hard it will be to estimate
parameters with the incorrect forcing).

2.5. Optimization Methods and Other Choices

[27] Ten participants submitted results to the OptIC
project, some submitting results using more than one
approach or variations of the same approach, to give
15 submissions for the first round of experiments (A1�A3,
A6�A8, B1�B6, C1�C4). There were slightly fewer sub-
missions for the second round of experiments (A4�A5,
A9�A11). Table 4 shows the list of parameter estimation
methods used, and a code for each submission that will
be used in figures and discussion. The methods are ordered
in the table and later in the analysis roughly from local
gradient-based searches to sequential methods to global
searches using stochastic selection. The methods are
described in more detail in Appendix B, and briefly here:
The Levenberg-Marquardt method is a gradient-descent
method that combines information about the gradient and
the second derivative to efficiently locate the minimum
[Doherty, 1999; Press et al., 1986]. The adjoint method
calculates the sensitivity of the model outputs to model
parameters (for example using an automatic differentiation
tool [Giering, 1997, 2000]) then uses a down-gradient search
method to estimate the parameters. The Kalman filter is a
sequential technique for state estimation, and here the
Extended Kalman filter (EKF) and Ensemble Kalman filter
(EnKF) were used with parameters included in the state
vector (C. M. Trudinger et al., Using the Kalman filter for
parameter estimation in biogeochemical models, submitted
to Environmetrics, 2007) (hereinafter referred to as Trudinger
et al., submitted manuscript, 2007). The Metropolis algo-
rithm is a Markov chain Monte Carlo (MCMC) method that
uses random walks to sample a probability distribution

[Metropolis et al., 1953]. Genetic algorithms are a type of
search technique that involve a population of solutions that
can reproduce, mutate, combine, or die, based on ideas of
evolution and natural selection in biology [Haupt and Haupt,
1998].
[28] These optimization methods differ in a number of

ways. One significant difference is in the way that they
locate the minimum (such as gradient-descent or global
search). Another is in how observations are processed,
either sequentially in the Kalman filters or all at once
(‘batch processing’) in the other methods. They also make
different assumptions about the statistics. The MCMC
methods, for example, allow representation of probability
density functions (pdfs) that are non-Gaussian [Knorr and
Kattge, 2005], whereas many other methods (such as
Levenberg-Marquardt, EKF, EnKF) assume that pdfs are
Gaussian. Adjoint methods minimize a cost function directly.
If, as is normal, this cost function is quadratic, this is
equivalent to a Gaussian assumption. Some methods are
equivalent for the linear case with Gaussian noise but involve
different approximations for nonlinear, non-Gaussian prob-
lems that can give rise to different solutions.
[29] Participants were not told what cost function to use,

and choices varied. In all but two cases the cost function
used can be written as

Q ¼
X
i

x1 tið Þ � z1 tið Þð Þ2

w2
1

þ x2 tið Þ � z2 tið Þð Þ2

w2
2

 !
; ð9Þ

where (inverse) weights w1 and w2 differed among
participants. Some participants (LM2, Adj1, Met2, Gen1)
used the same weights for both x1 and x2 in all experiments
(i.e., w1 = w2 = 1.0 or w1 = w2 = 0.01). Others (EKF, EnKF,
Met1 and Met1r) ran a preliminary calculation with constant
or arbitrary weights to determine the standard deviation of
residuals for x1 and x2, then used these values as weights for
z1 and z2. Adj2 and Met3 used the standard deviation of
observations as weights, and Gen1a used the mean of
observations as weights (with each of these methods
treating z1 and z2 separately in each experiment). LM1 used
a linear function of the observation values as weights. These
linear functions were based on linear regression of the
standard deviation of residuals from a preliminary calcula-
tion against observations, where residuals had been binned
according to the magnitude of the observation. In most
cases the absolute part of the linear function dominated
compared to the relative part, but in a couple of cases
(experiments A8, B4 and C3) the relative part dominated.
LM2z used weights in the cost function given by
max{z1(i),min[avg(z1),avg(z2)]} for z1(i) and similar for
z2(i). Met2z was identical toMet2 but with weights given by
max[1.0, z1(i)] for z1(i) with similar for z2(i). An important
distinction among these choices is whether weights vary for
each observation or not; see Table 4.
[30] Two participants submitted a ‘robust’ version of their

optimization, using cost functions that do not follow the
form in equation (9). LM1r ignored the highest 2% of
summands in the cost function, while Met1r used absolute
deviations instead of squared deviations. These were sub-
mitted by the same participants as LM1 and Met1, respec-

Table 3. Noise Types for Each Experimenta

Experiment Noise Type Code

A1 Gaussian additive G+
A2 Gaussian but noise in x2 correlated

with noise in x1

GC

A3 Gaussian with 99% of x2 data missing GM
A4 Gaussian with 99% of x1 and 90% of x2

data missing
GM

A5 Gaussian with Gaussian extreme outliers GE
A6 Gaussian + temporally correlated (Markov) GT
A7 Gaussian + drifts GD
A8 lognormal additive L+
A9 lognormal multiplicative L�
A10 Gaussian additive for obs; incorrect F(x) IF
A11 Gaussian additive for obs; incorrect F(x) IF
B1 Gaussian additive G+
B2 Gaussian additive G+
B3 Gaussian but noise in x2 correlated

with noise in x1

GC

B4 lognormal additive L+
B5 Gaussian + temporally correlated (Markov) GT
B6 Gaussian + drifts GD
C1 Gaussian additive G+
C2 Gaussian additive G+
C3 Gaussian multiplicative G�
C4 lognormal additive L+

aThe third column gives a code for each noise type that will be used in
the figures.
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tively, allowing comparison of the robust and nonrobust
versions.
[31] True initial values of x1 and x2 were not supplied.

Participants either used the first available observations for
initial x1 and x2 or estimated initial x1 and x2 in their

optimization. Some experiments had negative observations.
Participants either ignored these or replaced them with zero.
After some initial analysis of the results, participants were
asked to repeat the calculations with all methods using
common weights in the cost function (the standard deviation

Figure 2. Five hundred time steps of noisy observations (symbols) and true values (solid lines) for
variables x1 and x2 in all experiments. A10 and A11 are not shown because they used the same noisy
observations as Experiment A1. Observations shown for Experiment C3 start from t = 500, to show both
‘dormant’ and ‘active’ periods. The noise type for each experiment is shown in brackets (see Table 3 for
noise types).
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of residuals was chosen for this purpose and values were
supplied to participants).

3. Results

3.1. General Features

[32] Figure 4 shows the parameter estimates divided by
the true parameters for the 21 experiments. Each row
corresponds to one parameter (p1, p2, k1, or k2). Experiments
are ordered horizontally by parameter set. The codes along
the top of each plot (G+, GC, etc.) refer to the noise type of
each experiment (Table 3). (Also see auxiliary material1 for
figures showing all parameter estimates separately).
[33] Participants generally did very well at estimating the

parameters k1 and k2 (to within about 5% of truth for most
cases). The parameters p1 and p2 were significantly harder
to estimate, because they are somewhat collinear or
exchangeable (that is, they have a similar affect on obser-
vations, so can be hard to distinguish), but the estimates
were mostly within 40% of truth. The estimated error
covariance matrices suggested a strong anticorrelation in
estimates of p1 and p2; that is, where an estimate of p1 was
too high it was likely that the estimate for p2 would be too
low. This accords with the behavior seen in the ensemble of

estimates themselves. Both LM2z and Met2z had results that
were consistently farther from the truth than the other
submissions.
[34] Figure 5 shows contours of RMS differences from

true x1 and x2, of x1 and x2 calculated for an array of
incorrect parameters. Two parameters are varied at a time,
while keeping the other two parameters fixed at their true
values. x2 values are multiplied by 0.5 because their
magnitude is about twice that of x1, to weight both x1 and
x2 evenly. The true parameters for this figure correspond to
the parameters in Experiments A1�A11. Note that this
figure shows the difference of calculated x from true x,
and the picture would change slightly if we considered the
difference from noisy x. The ‘long valley’ (elongated
contours with slope around �1) in the plot of p1 and p2
shows the collinearity of p1 and p2. This makes these two
parameters difficult to estimate separately, and if this were a
real application it might be advisable to try to rewrite the
model equations so that all parameters were more easily
observable [Aalderlink and Jovin, 1997]. However, this
situation occurs often in real applications [e.g., Richardson
and Hollinger, 2005], so it is instructive to see how the
parameter estimation methods handle it. Note also that our
model does not appear to have multiple minima, something
that can be a problem for local down-gradient methods.

Figure 3. Forcing used to generate observations for
experiments A1�A11 (black line), with the forcing supplied
to participants for experiments A10 (red line) and A11 (blue
line). x1 and x2 calculated with each of these forcing time
series are also shown.

Table 4. Parameter Estimation Methods Used in the OptIC

Projecta

Code Method Weights

LM1 Monte Carlo then Levenberg-Marquardt lin(z)
LM1r as LM1, but ignore 2% highest

summands in cost function
lin(z)

LM2 Levenberg-Marquardt 0.01
LM2z Levenberg-Marquardt fn1(z)
Adj1 down-gradient search using model adjoint sd(resids)
Adj2 down-gradient search using model adjoint sd(obs)
EKF extended Kalman filter

(with parameters in state vector)
sd(resids)

EnKF ensemble Kalman filter
(with parameters in state vector)

sd(resids)

Met1 Metropolis Markov chain Monte Carlo sd(resids)
Met1r as Met1 but absolute deviations

not least squares
sd(resids)

Met2 Metropolis Markov chain Monte Carlo 1.0
Met2z as Met2 but weights depend

on noisy observations
fn2(z)

Met3 Metropolis Markov chain Monte Carlo sd(obs)
Gen1 genetic algorithm

(followed by downhill simplex)
1.0

Gen1a genetic algorithm
(followed by downhill simplex)

avg(obs)

aThe first column shows the codes used to identify the methods in
discussion and figures (where different numbers indicate submissions of the
same method by different participants, e.g., LM1, LM2 and Adj1 are by
three different participants, but Met2 and Met2z are by the same
participant). The second column describes the method. The third column
shows the weights used in the cost function (determined separately for z1
and z2 and for each experiment), where ‘1.0’ refers to w1 = w2 = 1.0, ‘0.01’
is w1 = w2 = 0.01, ‘sd(obs)’ is the standard deviation of observations,
‘sd(resids)’ is the standard deviation of residuals after a preliminary run of
the calculation, ‘avg(obs)’ is the average of observations, ‘lin(z)’ is a linear
function of the observation values, ‘fn1(z)’ is max{z1(i),min[avg(z1),
avg(z2)]} for z1(i) and similar for z2(i), and ‘fn2(z)’ is max[z1(i), 1.0] for
z1(i) with similar for z2(i). Boldface emphasizes the cases with weights that
vary with each observation.

1Auxiliary materials are available in the HTML. doi:10.1029/
2006JG000367.

G02027 TRUDINGER ET AL.: OptIC: OPTIMISATION INTERCOMPARISON

7 of 17

G02027



[35] We can analyze the error covariance matrix using the
methods of principal component analysis [Preisendorfer,
1988], in which eigenvectors and eigenvalues of the covari-
ance matrix reveal patterns of uncertainty in the estimates
[Menke, 1989]. For example, the eigenvalues estimated by
Adj2 for experiment A1 were

l ¼ 9:7e�8; 1:0e�6; 4:9e�4; 3:5e�2

 �

;

and the eigenvectors are given by the columns of

0:026 0:048 0:89 �0:46
0:012 0:021 0:46 0:89
0:16 0:98 �0:057 0:0032
0:99 �0:16 �0:020 0:0013

2
664

3
775;

where the parameters are ordered as (p1, p2, k1, k2).
[36] These are typical of the eigenvalues and eigenvectors

of covariance matrices estimated by the other methods for
this and other experiments. The smaller eigenvalues corre-
spond to the directions in parameter space that are best
resolved by the optimization. If the ratio of an eigenvalue to
the smallest eigenvalue is large, then the corresponding

eigenvector defines a direction in parameter space that is not
well resolved. In our example above, the first eigenvector
(i.e., the best resolved direction) is dominated by a single
element (0.99), corresponding to parameter k2. The second
eigenvector is also dominated by a single element (0.98),
corresponding to parameter k1. The third and fourth eigen-
vectors correspond to directions that are not as well resolved
(indicated by smaller eigenvalues), and they each contain
two significant components rather than one (0.89 and 0.46),
indicating some correlation between p1 and p2. In general,
the principal component analysis confirms that k1 and k2 are
the most easily observed parameters, and that it is more
difficult to separate the effect of p1 and p2.
[37] Participants estimated x1 and x2 for 12,000 time

steps, on the basis of observations of only the first 10,000
time steps. A measure of skill is the RMS difference of
predicted x1 and x2 from true x1 and x2, normalized by the
mean x1 and x2 for each experiment. Figure 6 shows this
measure for x1 over the range 0 < t < 10,000 to indicate how
well the estimated x1 matches the true values when there are
observations, and for t > 10,000, indicating how well the
estimated parameters can forecast x1 into the future.
(A corresponding figure for x2 is given in the auxiliary
material.) Although the estimated parameters may not

Figure 4. Parameter estimates divided by true estimates for all experiments. Labels on the lower x axis
refer to Experiment, and labels on the upper x axis refer to the noise type for that experiment (see Table 3).
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match the true parameters exactly, we wondered whether the
model may still be able to predict x1 and x2 well because of
the collinearity of parameters. These results showed that
when a method gave parameter estimates that were farther
from the true parameters, it also predicted x1 and x2 that
were farther from the truth. Thus, although there is a strong
correlation between some parameters, particularly p1 and p2,
the best match with true x1 and x2 was in fact obtained with
the true parameters.

3.2. Choice of Cost Function

[38] In some cases there were substantial differences
between implementations of the same method. Much of
this difference seems to have been due to the choice of cost
function. Cost functions based on (inverse) weights w1 and w2

(equation (9)) that depended on the observations (methods

LM2z, Met2z and in some cases LM1) did not do as well as
those using constant weights.
[39] For example, Met2z used the same optimization

method as Met2, with the only difference being the weights
in the cost function (Met2z weights varied with the noisy
observations apart from a lower threshold for small z1 and z2,
Met2weights were fixed to 1.0).Met2was more successful at
estimating the parameters than Met2z. Similarly, LM2 was
more successful than LM2z.
[40] LM1 used weights that were a linear function of

observations (with nonzero intercepts). The linear function
was determined from residuals after a preliminary optimi-
zation, as described earlier. The linear increase in the
weights dominated over the constant part for experiments
A8, A9, A11, B4 and C3, but in all of these cases except
A9, LM1 was less successful at estimating the parameters
relative to performance of LM1 for other experiments. The
noise in experiments A8, A11 and C3 did not depend on the
true x1 and x2, and use of weights that varied linearly with
observations was not particularly successful. Experiment
A9 had lognormal multiplicative noise that did increase
with the true x1 and x2. In this case the parameter estimates
from LM1 differed from all of the other methods but were
not significantly better or worse (in particular, k1 and k2
from LM1 were too high, but from all other methods were
too low by a similar amount). Experiment C3 had Gauss-
ian multiplicative noise (i.e., noise that depended on the
true x1 and x2), but LM1 was less successful than the
majority of methods. Most of the experiments did not have
noise that varied with the magnitude of x1 and x2, but even in
the cases where it did, use of weights in the cost function that
varied with observations was not particularly successful.
[41] Two participants included a ‘standard’ and a ‘robust’

case calculated with the same optimization method. LM1r
was identical to LM1 but ignored the highest 2% of
summands in the cost function. LM1r estimates were closer
to the truth in ten of the experiments, similar in one
experiment and worse in five experiments (B1, B4, B5,
B6 and C1, covering a range of different noise types). (We
quantified the differences between robust and standard cases
by comparing for each experiment the sum of the absolute

Figure 5. Contours of RMS differences of calculated x1 and
x2 from true x1 and x2 for pairs of parameters for Experiments
A1–A11. In each panel, two parameters were varied while
the other two parameters were fixed at the true values. In
calculating the RMS differences, x2 values were weighted by
0.5 because their magnitude is about twice that of x1. The plus
symbols indicate the true parameters. The contour interval
is 0.2.

Figure 6. RMS difference of predicted x1 from true x1 normalized by mean x1, for (top) 0 < t < 10,000
and (bottom) t > 10,000.
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deviations of each parameter estimate from truth divided by
the standard deviation of all estimates (excluding LM2z and
Met2z) of that parameter.) Met1r was identical to Met1, but
used absolute deviations rather than squared deviations.
Met1r was better than Met1 in eleven of the experiments,
slightly worse in two and significantly worse than Met1 in
three experiments (A8 and B4 with lognormal noise added
and C2 with Gaussian noise multiplied). Neither LM1r nor
Met1r did the 5 experiments A4, A5, A9, A10 and A11.
Thus both ‘robust’ methods outperformed the corresponding
‘nonrobust’ case in the majority of experiments. There was
more variation in results between Met1 and Met1r (with
absolute deviations) than between LM1 and LM1r (ignored
highest 2% of summands).
[42] In order to compare the choice of weights in the cost

function without the effect of differences between methods,
Figure 7 shows parameters p1 and k1 estimated by a single
method with a range of different cost function weights,
covering many of the choices in the OptIC results
(a corresponding figure for p2 and k2 is included in the
auxiliary material). The Levenberg-Marquardt package
PEST [Doherty, 1999] that was used in the LM2 and
LM2z calculations was chosen for this purpose. The cases
shown in blue have weights that are constant with time,
while those in red have weights that vary for each obser-
vation (although recall that the linear function as described
above was essentially constant for many experiments). The
spread of results due to different cost function weights was
similar to the spread from the full set of OptIC results. The
results of Met2z showed strong correspondence with
‘W = fn2(z)’ that used the same weights. Cases with
constant weights generally showed very similar results
(Experiments C3 and C4, the two cases with active and
dormant periods, had the most difference between results
for different choices of constant weights).
[43] The cases ‘W = lin(z)’ and ‘W = lin(x)’ in Figure 7

both used the linear functions that were used by LM1, but
‘lin(z)’ implemented this as a function of noisy observations
while ‘lin(x)’ implemented it as a function of true values of
x1 and x2. Obviously true values would not be available in a
real application, but this comparison was to test whether

weighting by noisy observations would bias the results
because an observation that is accidentally low is given
more weight than one that is accidentally high by the same
amount [Evans, 2003]. Of the five experiments that had a
significant linear variation in weights, there were three in
which the results with ‘lin(x)’ were significantly better than
with ‘lin(z)’ (A8, A9 and B4), one where the results were
similar for both (C3) and one where the results were slightly
better for ‘lin(z)’ (A11). These results suggest that a bias can
be introduced by weighting by noisy observations. The
potential for bias would vary for different applications,
dependent on the relative magnitudes of the noise and
signal, but is certainly something to be aware of. Experi-
ment A9 was slightly better with ‘lin(x)’ than constant
weights, but was significantly worse with ‘lin(z)’ than
constant weights. Figure 7 highlights the need for care in
choosing the error model (including cost function).

3.3. Comparison of Methods

[44] The range of choices that OptIC participants made
for the cost function weights (and its dominant effect on
the results) was very interesting, but it obscured the
comparison of the parameter estimation methods them-
selves. Therefore participants were asked to submit a
second round of results determined using common cost
function weights, corresponding to the standard deviation
of residuals. Values for the weights were provided, but in a
couple of cases participants used the standard deviations of
residuals they had calculated themselves (these were very
close to the values provided). Figure 8 shows estimates of
parameters divided by true estimates calculated with the
specified weights. (Also see auxiliary material for figures
showing all parameter estimates separately.)
[45] There are fewer methods in this figure than in the

original set of results, for three reasons: (1) the original set
of 15 results had three cases where the same method was
used with different cost function weights (LM2 and LM2z;
Met2 and Met2z; Gen1 and Gen1a), (2) ‘robust’ cases
(LM1r and Met1r) were not resubmitted with specified
weights, and (3) the participant who used Met2 did not
submit results in the second round. This left 9 methods that

Figure 7. Parameter estimates for p1 and k1 divided by true estimates from running the Levenberg-
Marquardt method PEST for a range of weights in the cost function (weight descriptions match Table 4).
A corresponding figure for p2 and k2 is given in the auxiliary material.
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used specified weights for comparison. The range of results
was reduced from the original range mainly because we
have removed the cases using weights dependent on the
observations. There is a small amount of further reduction in
spread from using the same values for the weights (based on
the standard deviation of residuals), compared to the orig-
inal spread of results from methods that used constant
weights. An exception isMet3. This method is often furthest
from the truth for experiments B1�B6 and C1�C4 in
Figure 8. The reason for this is likely to be due to tuning
of the optimization. Selection of an appropriate step size is
known to be time consuming, and if not done properly can
lead to problems. Some of the runs with this method did not
converge. The original results from Met3 (with weights of
1.0) were better than the results with supplied weights.
Overall, the results in Figure 8 do not show any method or
group of methods as being consistently more successful at
estimating the model parameters.

3.4. Comparison of Noise Types

[46] Experiments A1�A11 have the same true parameters
with different noise types. Experiments B1�B6 have the
same parameters as each other and the same noise types as
some of A1�A11. These two sets of experiments show
similar patterns for common noise types.

[47] The cases with uncorrelated Gaussian noise (A1, B1
and B2) show similar results in terms of how well partic-
ipants estimated the parameters and x1 and x2, relative to the
other cases. Experiments with noise in x2 correlated with
noise in x1 (A2 and B3) have a similar spread of results to
the uncorrelated Gaussian cases, suggesting that this corre-
lation did not make it more difficult to estimate the
parameters.
[48] Experiment A3, with 99% of x2 observations miss-

ing, has much greater spread in estimates for k2. There is
also greater uncertainty in this estimate compared to A1.
Figure 9 shows the parameter estimates with uncertainties
for these two experiments, where we use the square root of
the diagonal element in the covariance matrix as a measure
of the uncertainty in the parameter estimate. (It is worth
noting that as there are some strong correlations in the
estimated covariance matrices, particularly between p1
and p2, that the full uncertainty is not reflected in just the
diagonal terms of the covariance matrix, but that the entire
covariance matrix is required to characterize the uncertainty
fully. Despite this, the diagonals can still provide a conve-
nient measure of the uncertainty, useful for comparison
between different experiments and methods.) The estimate
of k2 is vulnerable to missing or degraded x2 observations,

Figure 8. Parameter estimates for divided by true estimates calculated using weights in the cost function
that correspond to the standard deviation of residuals.
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and this is reflected in greater uncertainties in the estimate of
k2. The variable x2 corresponds conceptually to litter and soil
carbon, which can be difficult to measure regularly or
accurately, and hard to calibrate. Experiment A4 has most
of x1 and x2 missing, and like A3, the spread of estimates is
generally greater than A1 but this is accompanied by larger
uncertainties (Figure 9).
[49] We now turn to the question of bias in parameter

estimation. Cases with lognormal noise (A8 and B4), and
temporally correlated noise (Markov in A6 and B5 and
drifts in A7 and B6) all generally led not only to larger
spread compared to Gaussian cases, but also to biases in
estimates of the parameters. Importantly, biases are often
not reflected in the uncertainties (Figure 9), leading to the
risk of misleading interpretation. In real systems, noise is
often not Gaussian, and Figure 9 demonstrates the problems
that can arise when a Gaussian assumption is made.
Characteristics of the residuals (observed minus predicted
x1 and x2), such as distribution and autocorrelation, may
suggest improvements that could be made to the error model

to improve the results. The residuals for these cases clearly
show non-Gaussian distributions or correlation in time.
[50] Two experiments (A10 and A11) supplied incorrect

forcing, F(t). In both cases the estimated parameters were
biased. Experiment A11 was particularly difficult, with
many optimization methods wanting a negative value for
parameter p2, so the results often show it sitting at the lower
boundary of the prior range or outside the range if partic-
ipants allowed that outcome.

3.5. Comparison of Parameter Sets

[51] The experiments that gave participants the most
trouble were A11 and C1�C4. In C3 and C4, the model
flipped between dormant and active behavior, meaning that
for some of the time the sensitivity to parameters was low.
In C1, the parameter p2 was particularly difficult to estimate
because the mean value of x2 was very large (around 1000)
compared to the value of p2 (i.e., with large x2, the term
x2/(p2 + x2) is less sensitive to variations in p2). In C2, the
true values of the rate constants k1 and k2 were similar, giving

Figure 9. Parameter estimates with 1s uncertainty range for experiments A1, A3, A4, and A7. The
uncertainty range is the square root of the diagonal elements in the error covariance matrix (this was not
available for the genetic algorithm). Results were generated using weights in the cost function that
correspond to the standard deviation of residuals. Methods are ordered from left to right as listed in the
key for Figure 8 (LM1 and Met3 were not submitted for Experiment A4). The horizontal lines show the
true values of the parameters.
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similar mean values for x1 and x2 so that parameters p1 and p2
were even more difficult to distinguish than in other cases.
A11 had severely incorrect forcing. For these difficult cases,
parameter estimates were usually within 30% of true values
for k1 and k2, and 100% for p1 and p2.

4. Discussion

[52] The choice of cost function appears to have been a
very important component in the OptIC results, apparently
more important than the choice of optimization method.
Evans [2003] discussed choice of the cost function in
biogeochemistry in detail. In a review of the literature on
parameter estimation in biogeochemical models, he claimed
that ‘‘it was hard to find two groups of workers who made
the same choice for the form of the misfit function’’, with
most of the differences being in the form of the weights. He
also demonstrated with an example for the subtropical
North Atlantic that the results of parameter estimation can
vary substantially for different choices of the cost function.
Our results from OptIC also showed that a range of initially
reasonable choices for the cost function led to varying
results.
[53] Analysis of the statistics of the residuals can be used

to improve an optimization calculation. In most cases,
OptIC participants did not allow the statistics of the resid-
uals to alter their optimization approach. A major exception
was LM1, where the cost function weights were determined
for each experiment by analysis of the variation of residuals
as a function of the observations. Unfortunately this method
was not particularly successful, even when the residuals
suggested that noise varied with the observations. This lack
of success was apparently due to bias introduced because
observations that are accidentally high are weighted lower
than observations that are accidentally low. This result may
be relevant for optimizations using eddy covariance flux
measurements, following the conclusion of Richardson et
al. [2006] that flux measurement errors scale with the
magnitude of the flux. A number of participants determined
the standard deviation of residuals from an initial optimi-
zation and used these as weights in the cost function, but did
not alter their approach when the residuals were clearly non-
Gaussian or temporally correlated. Examples of possible
approaches to deal with the different error types could
involve the use of transformations to make the noise more
closely Gaussian, or, in the case of the EKF or EnKF,
inclusion of an additional component with autoregressive
evolution in the noise (or in the forcing for the cases with
incorrect forcing) to cope with temporal correlations.
[54] In OptIC, the more complicated error models hap-

pened to be less successful than simpler assumptions. This
finding will not necessarily hold for real applications with
more complex models and error structures, but it serves as a
strong warning for care in choice of the error model, and
testing of the sensitivity to different options. In absence of
good knowledge of the characteristics of the errors, simpler
options may be better than complicated ones. A good
optimization should begin with characterization of the
statistics of the system (including noise), and the approach
should be tailored to meet specific needs, but care is needed
to avoid unintended consequences of the choices made.

[55] Two ‘robust’ cost functions were included, and they
outperformed the corresponding standard least squares cost
functions in the majority of experiments. In one case,
‘robust’ was defined as using absolute deviations, while in
the other the highest 2% of summands in the cost function
were ignored. Both approaches were similar in that they
reduced the influence of outliers. Richardson and Hollinger
[2005] and Richardson et al. [2006] have argued for the use
of absolute rather than squared deviations for optimizations
using flux tower measurements of energy or CO2 fluxes
(which they show can be described by a double-exponential
distribution rather than a normal distribution). Here the
robust methods were generally more successful for a range
of different noise types including Gaussian.
[56] Our results showed no benefit from methods that

allowed non-Gaussian pdfs for the posterior parameter
estimate. Other applications where the model is more
complicated, for example with multiple minima, might be
expected to benefit from methods that allow non-Gaussian
pdfs, but this would still not correct for an inappropriately
specified error model.
[57] A few participants used a combination of global

search and local gradient methods (e.g., LM1 and LM1r
used Monte Carlo then Levenberg-Marquardt, Gen1 and
Gen1a used a genetic algorithm then downhill simplex).
Results for our experiments were not significantly different
for local gradient or global search methods, so we are
unable to assess how a combination of these approaches
compares to either type of method on their own.
[58] There are a number of metrics for intercomparing

methods, which are relevant for real applications, such as
computational cost, setup cost, flexibility and simplicity of
implementation, and information obtained from the inver-
sion. The different methods varied substantially in the
number of model integrations used (i.e., number of times
the OptIC model was called to run over the entire time
range), and therefore in the time taken to run the optimiza-
tion calculations. The OptIC model, having simple equa-
tions with only two variables and four parameters, is very
fast to run, so it was possible to run a very large number of
integrations. However, in a more realistic application with a
larger and/or more complex model, or with more parameters
to estimate, limiting the optimization to a practical number
of model iterations would be a much higher consideration.
For some methods used in the OptIC project, it took
significantly more iterations to estimate the covariance
matrix than to estimate the parameters. Methods can be
grouped into four categories in terms of number of
iterations used: methods that took up to a few hundred
iterations (LM2, LM2z, Adj2, EKF, EnKF), a few thou-
sand iterations (LM1, LM1r), around 10,000 (Gen1,
Gen1a) and 100,000 or more iterations (Met1, Met1r,
Met2, Met2z) to estimate both the parameters and covari-
ance matrix for each experiment. The global search
methods used more iterations than the down-gradient
and sequential methods, but some of the methods using
a high number of iterations could also be run successfully
with fewer iterations if required.
[59] There are significant differences between methods in

terms of setup of the optimization calculation and ability to
handle changes to model code. Adjoints can be expensive to
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set up, but can handle simple changes to model code
relatively easily. The EKF requires the Jacobian for the
model, which may be difficult to specify for a complicated
model, and would need to be updated if the model code
changed. Monte-Carlo methods (EnKF and the global
search methods) can easily cope with changes to model
code, but they can require experience to achieve the most
from the method due to choices of settings. The Levenberg-
Marquardt method is available in easy-to-use packages
[e.g., Doherty, 1999], copes easily with changes to model
code, but is expensive when many parameters must be
estimated simultaneously. All methods involve some
choices, such as stopping criteria, or specification of model
error for the Kalman filter.
[60] Another issue is the number of parameters that can

be inverted simultaneously by the different methods. A high
number of parameters may be a problem for down-gradient
approaches like Levenberg-Marquardt, depending on the
model and whether there are multiple minima. This could
also be a problem for the Metropolis approach due to larger
number of iterations required for many parameters, and
therefore computational time.
[61] The Kalman filters (sequential methods) performed

as well as the batch methods for these experiments, with the
EnKF outperforming the EKF (as has also been shown in
many other studies of strongly nonlinear models [e.g.,
Verlaan and Heemink, 2001]). The Kalman filter starts with
the initial guess for the state variables (including the four
parameters), and updates their estimates sequentially as it
runs through time processing the observations. The state
variable estimates at any time are due to observations up to
and including that time. The parameter estimates from the
final time are taken as the best estimates, because they have
been influenced by all observations. The early estimates of
x1 and x2 therefore do not correspond to the final (best)
parameter estimates, and consequently the EKF and EnKF
have relatively high RMS differences of x1 from truth for
0 < t < 10,000 in Figure 6 (the differences are less for the
t > 10,000, or for the range 5000 < t < 10,000). Use of the
Kalman smoother would improve this (this was not done
here). (The Kalman smoother involves first running the
Kalman filter to process all data, then running the calculation
backward in time from the final estimate to give state variable
estimates at all times that depend on all observations.)
[62] Aparticular strengthof theKalman filter is theability to

assimilate observations allowing for errors in the forcing or
the model. The OptIC model was known exactly, so our
experiments did not exploit this advantage of theKF formodel
error.TheEnKFcanbeused to account for errors in the forcing
[e.g., Moradkhani et al., 2006; Slater and Clark, 2006]. For
the twoOptIC experiments with incorrectly specified forcing,
the error in the forcing was temporally correlated. This could
have been included in the EnKF using state augmentation,
which involves adding an extra component to the state vector
[Gelb, 1974; Reichle et al., 2002].
[63] Zimmerman et al. [1998] compared seven different

inverse approaches for identifying aquifer transmissivity.
They found that the most important factor for achieving a
successful solution was the time and experience devoted by
the user of the method. As choice of the cost function was
clearly important in OptIC, our results suggest that experi-
ence and time devoted to looking at statistics of the

residuals and refining the error model would be beneficial
to obtaining the best solution in an optimization. In addi-
tion, the results from Met3 with supplied weights were
generally farther from the truth than other methods, and it
appears that tuning of the method was an issue, which is
related to experience and time devoted to the calculations.
One participant initially used fixed values of 0.1 for the
initial values of x1 and x2. This gave incorrect results,
particularly for experiments with true initial x1 and x2 that
were significantly different from 0.1. This further highlights
the need for care in making the various choices that go into
an optimization calculation.
[64] Some features of our model and experiments were

simpler than might be expected in many real-world appli-
cations (such as the small number of parameters to estimate,
short integration time, and a perfectly known model without
multiple minima), while others were as difficult as would be
found in some real-world applications (such as a strongly
nonlinear model, collinearity of parameters, complicated
and unknown types of noise, missing observations and
incorrect forcing). Thus, while the tests in this paper do
not probe all possible aspects of a comparison of optimiza-
tion methods, our conclusion of the importance of the error
model (including the choice of cost function) will still be
highly relevant for the more complex cases. Provided the
statistical inputs to the problem are correctly specified, the
choice of optimization method can be made on computa-
tional or logistical grounds.

5. Conclusions

[65] The OptIC project used pseudo-data from a highly
simplified test model to compare parameter estimation
methods in an international intercomparison, with a focus
on issues relevant to parameter estimation in terrestrial
biogeochemical models. Overall we found the different
types of methods equally successful at estimating the
parameters. The choice of cost function differed among
participants, and the most prominent feature of the results
was that this choice had significantly greater impact on the
results than the choice of optimization method. In other
words, it mattered much more how participants defined the
minimum than how they located it.
[66] The cost function involves the mismatch between

simulated and observed quantities, often weighted accord-
ing to confidence in the observations. Some participants
used weights that were a function of the (noisy) observa-
tions, but they were less successful than those who used
constant weights. Even when the residuals suggested a
relationship between the magnitude of the noise and the
signal, weighting by noisy observations was not particularly
successful, apparently owing to bias caused because obser-
vations that are accidentally low are weighted higher than
observations that are accidentally high. These results high-
light the need for care in choosing the error model in an
optimization, and may be particularly relevant for optimi-
zations involving eddy covariance flux measurements
where the errors have been shown to scale with the
magnitude of the flux [Richardson et al., 2006]. We
recommend than an optimization involve analysis of the
statistics of the residuals combined with testing of the
sensitivity of results to the choice of error model.
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[67] Two participants submitted a ‘standard’ (i.e., least
squares) and a ‘robust’ version of their results, where
‘robust’ was defined (in slightly different ways) to down-
weight the influence of outliers in the cost function. Both
robust methods generally outperformed the corresponding
standard case.
[68] When common (specified) weights were used in the

cost function, no group of methods (down-gradient, global
search or sequential) was clearly more or less successful at
estimating model parameters. The Kalman filter, a sequen-
tial state estimate method that has not commonly been used
for parameter estimation until recently, was as successful at
estimating the parameters as the batch methods. Results
differed more owing to different noise types than optimiza-
tion methods, suggesting again the importance of the error
model.
[69] Some clear patterns emerged for the different types

of noise. When the noise added to one variable was
correlated with the noise in the other, this did not seem to
affect parameter estimation. When most of the observations
were missing, the parameters were not as well estimated,
but uncertainties in the parameters increased to reflect the
reduced information. When the noise was non-Gaussian or
temporally correlated, biases occurred in all optimization
methods, but the biases were not reflected in the uncertainties.
[70] In two experiments the forcing supplied to partic-

ipants was degraded, one slightly and one severely. In both
cases the estimated parameters were biased. This has
implications for real applications, where forcing would
rarely be perfectly known. In addition, the model itself
would not be known exactly in a real application.
[71] We used a highly nonlinear model, with collinearity

and complicated noise types, thereby addressing some of the
issues faced in real-world problems. However, the model did
not have multiple minima, many parameters to estimate or
expensive computational cost, which are issues that could
make some methods more appropriate than others in a
different application. Although ours was a relatively simple
example in some ways, our clear conclusion of the impor-
tance of the error model will still be highly relevant for more
complex problems with additional issues to address.
[72] All optimization methods have choices to be made,

and these have the potential to influence the results. In our
application, no group of methods (down-gradient or global
search, batch or sequential) was clearly more or less success-
ful at estimating parameters. The main criterion for success
was the choice of error model and thence the cost function
being minimized. The OptIC model and data sets are avail-
able on the OptIC website http://www.globalcarbonproject.
org/ACTIVITIES/OptIC.htm.

Appendix A

[73] The forcing function, F(t), was supplied to partic-
ipants. It was calculated as a random process such that ln
F(t) is AR(1) with specified mean and standard deviation.
Specifically, we took F(t) = p0exp(m(t)), where p0 is a
measure of the mean magnitude of F(t), and m(t) is a
dimensionless Markov process with zero mean, standard
deviation sm, and timescale Tm and Gaussian increments
(the Ornstein-Uhlenbeck process). The process m(t) obeys
the Langevin equation, the stochastic differential equation

dm/dt = �(m/Tm) + (sm
ffiffiffiffiffiffiffiffiffiffiffi
2=Tm

p
)x(t), where x(t) is Gaussian

white noise [Arnold, 1974; Legg and Raupach, 1982]. In
finite difference form, F(t) is given by

F tið Þ ¼ Fi ¼ p0 exp mið Þ

mi ¼ ami�1 þ bsmwi with a ¼ exp �Dt=Tmð Þ; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p �
;

ðA1Þ

where Fi and mi are sequences of F(t) and m(t) at times ti
with increments Dt, and wi is a Gaussian random number
with zero mean and unit variance. This formulation ensured
that F(t) was always positive. The quantities determining
F(t) are p0, sm and Tm. In the reference case, the values used
were p0 = 1, sm = 0.5 and Tm = 10 Dt, with discretization
interval Dt = 1 time unit. These properties of F(t) were
given quantities, not model parameters to be estimated.

Appendix B

[74] This appendix describes the parameter estimation
methods used in the OptIC project, and the assumptions
made by each of the participants.

B1. Levenberg-Marquardt (LM1, LM1r, LM2, LM2z)

[75] Levenberg-Marquardt is a gradient-descent method
for parameter estimation in nonlinear models. The algorithm
combines the method of steepest descent and use of the
Hessian (second derivative) to find the minimum, where
the combination of methods changes as you approach the
minimum.
[76] LM1 started with a 1000 model run Monte-Carlo

type exploration of parameter space to obtain the best initial
guess, then performed the Levenberg-Marquardt algorithm.
A bootstrapping approach was taken for uncertainties. LM1r
was identical to LM1 but with 2% highest summands in
the cost function ignored. LM2 performed the Levenberg-
Marquardt algorithm from PEST (Doherty, 1999). LM2z
was the same as LM2 but with weights in the cost function
that varied with observations.

B2. Adjoint (Adj1, Adj2)

[77] The adjoint of a model allows you to compute the
sensitivity of model outputs to model inputs (including
parameters). This can be used in a down-gradient line search
to estimate model parameters.
[78] Adj1 used the automatic differentiation tool TAMC

[Giering, 1997] to generate the model adjoint and the
Hessian (matrix of second partial derivatives from which
uncertainties can be inferred). The gradient search method
used was a limited-memory quasi-Newton method for large-
scale bound-constrained or unconstrained optimization
[Byrd et al., 1995; Zhu et al., 1997].
[79] Adj2 used the automatic differentiation tool TAF

[Giering, 2000] to generate the model adjoint, and the
Hessian. The cost function included the squared weighted
difference between modeled and observed x1 and x2, plus
the squared weighted difference of parameters from a prior
estimate (prior estimates for the parameters varied between
cases). The gradient search method used was a steepest
descent method.
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B3. Kalman Filter (EKF, EnKF)

[80] The Kalman filter is a sequential method for esti-
mating the state of a system. The Extended Kalman filter
(EKF), which involves linearization of the model equations
about the current trajectory, and the Ensemble Kalman filter
(EnKF), which uses Monte Carlo techniques, can be applied
to nonlinear systems [Gelb, 1974; Evensen, 2003].
[81] EKF and EnKF involved estimation of parameters by

including them in the state vector, and estimating them
sequentially in addition to the variables x1 and x2. Model
error was zero for both variables and parameters. A prelim-
inary run of the Kalman filter was performed, and two to
three times the standard deviation of residuals was taken as
the observation error for subsequent runs. This choice was
based on experience with the EKF and EnKF that has
shown better results for parameter estimation when greater
uncertainties are used than would be suggested by residuals
(Trudinger et al., submitted manuscript, 2007). Increasing
the observation error gave better results for parameter
estimation than increasing the model error. The EnKF
calculations used 300 ensemble members, although results
were similar down to about 50 ensemble members. The
parameter estimates were usually close to their final values
after about 1000 time steps. Trudinger et al. (submitted
manuscript, 2007) describes the EKF and EnKF calcula-
tions for OptIC in more detail.

B4. Markov Chain Monte Carlo (Met1, Met1r,
Met2, Met2z, Met3)

[82] Markov chain Monte Carlo (MCMC) methods are a
family of techniques that use Monte Carlo sampling to
generate a discrete approximation of the posterior probabil-
ity distribution of the parameter(s) one seeks to estimate.
These distributions often (except for trivial cases) elude
direct calculation. MCMC invokes Bayes’ rule to decom-
pose a parameter’s posterior distribution into a product of
conditional distributions that are simpler to sample from.
This quality has lead to MCMC being used in numerous
parameter estimation problems [Gilks et al., 1996].
[83] MCMC methods create a sequence of samples by

performing random walks through parameter space. Each
new value relies only on the value from the previous
iteration (i.e., Markovian property). The size of each step
is governed by a proposal distribution. The rules to decide
the size of each step form the various instances of sampling
algorithms. The Metropolis sampler, or more generally
Metropolis-Hastings sampler [Hastings, 1970], is one of
the more popular MCMC sampling algorithms [Andrieu et
al., 2003]. The algorithm requires ‘‘tuning’’ so that samples
are generated at a rate that is sufficiently high to efficiently
survey parameter space and ensure the resulting parameter
estimates are globally optimal. There are many diagnostic
measures to assess whether sequences have converged to
the desired distribution. One of the most popular is that of
Gelman and Rubin [1992] which uses multiple runs and
iterations terminate once the ratio of the between- and
within-run variance is close to unity. Given a sufficiently
long sequence of parameter values, the final parameter
estimates may be taken from the mean, median or mode
of each distribution, or we may choose the maximum a
posteriori estimate (i.e., the estimate corresponding to the
maximum of the posterior distribution).

[84] Met1 used the Metropolis algorithm from Numerical
Recipes [Press et al., 1986] with squared deviations in the
cost function, while Met1r used the same algorithm with
absolute deviations. Met2 used the Metropolis algorithm.
Met2z was the same as Met2 but with weights in the cost
function that varied with observations.
[85] Met3 also used the Metropolis algorithm however

with standardized data as inputs (i.e., the observations were
scaled to have zero mean and unit variance). This corre-
sponded to having weights of sd(obs) in equation (9). Initial
tuning runs were conducted to ensure that candidate values
were accepted at a rate between 20–75%. The Gelman and
Rubin [1992] convergence statistic was used on four parallel
runs. Convergence to the desired posterior distribution was
observed for some data sets to occur by 40,000 iterations.
For other data sets, when sequences failed to reach conver-
gence by 40,000 iterations, iterations were manually termi-
nated and visual appraisal was used to select the single
‘‘best’’ run. Using the values from all available runs, the
maximum a posteriori estimates were chosen to be the final
parameter values presented.

B5. Genetic Algorithm (Gen1, Gen1a)

[86] Genetic algorithms start with a population of
randomly generated individuals. The cost function is eval-
uated for every individual in the population, then multiple
individuals are stochastically selected from the current
population (based on their fit to observations), and modified
(mutated or recombined) to form a new population (the
‘next generation’). The new population is then used in the
next iteration of the algorithm, and this is repeated for a
number of generations.
[87] Gen1 and Gen1a used an initial population size of

600 and the cost function of each was calculated. The best
48 solutions were retained and allowed to evolve for a
further 250 generations with a mutation probability of 0.03.
The genetic algorithm implementation was from Haupt and
Haupt [1998] and was followed by a downhill simplex
routine ‘Amoeba’ [Press et al., 1986]. Gen1 and Gen1a
differ in their choice of cost function weights (1.0 or the
average of observations, respectively).
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