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Satellite remote sensing products of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are
routinely used for diverse applications in Earth-System and land-surface modelling and monitoring. The
availability of numerous products creates a need to understand the level of consistency between products, and
reasons for inconsistencies. We evaluate the consistency of six FAPAR products (MODIS, MERIS, SeaWIFS,
MODIS-TIP, SPOT-VEG, and AVHRR) across the Australian continent, using multi-year records. We find that
seemingly large differences in FAPAR products overmuch of Australia can be explained by a simple offset present
in certain products. Additional inconsistencies arise from different sensitivities in FAPAR to changes in vegetation
cover. These inconsistencies can in turn be partially attributed to changes in biome type that are relevant to
certain products and related model-specific assumptions.
The satellite FAPAR products are compared to ~800 observation-based estimates of fractional vegetation cover at
field sites across Australia. After accounting for offsets in FAPAR, relatively high agreement occurs at sites classi-
fied as grasslands, shrublands andmanaged land (agriculture). Significant disagreement occurs at sites correctly
classified as forests. Consequently, some products show significant differences in FAPAR between regions of
similar vegetation cover but different biome classification.We find that all products show amuch lower sensitivity
to fractional vegetation cover (range in coefficient of linear regression: 0.28–0.61) than is predicted theoretically
(0.96–1.18) using a canopy radiative transfer model. Reasons for this discrepancy are discussed.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) is defined as the fraction of Photosynthetically Active Radia-
tion (PAR) absorbed by green elements of healthy vegetation (FAO,
2008; Liang, Li, &Wang, 2012). Absorption of PAR occurs during photo-
synthesis and is closely related to leaf chlorophyll content (Gitelson,
Gritz, & Merzlyak, 2003) and carbon assimilation (Sellers, 1985, 1987;
Sellers, Berry, Collatz, Field, & Hall, 1992). FAPAR is an ‘integrated indi-
cator’ of the status of the vegetation canopy (Gobron, Pinty, Taberner,
et al., 2006) and is classified as an essential climate variable of the
Earth (GCOS, 2006).

FAPAR is a physical quantity of the land-surface radiation budget and
is defined as (Liang et al., 2012):

FADAR ¼ PAR ↓; TOCð Þ−PAR ↓;BOCð Þ þ PAR ↑;BOCð Þ−PAR ↑; TOCð Þ
PAR ↓; TOCð Þ ð1Þ
.A. Pickett-Heaps).

ghts reserved.
↓ Downward radiation flux
↑ Upward radiation flux
TOC Top of canopy radiation
BOC Bottom of canopy radiation

Advances inmodelling the radiation and energy budget (e.g. Bacour,
Baret, Beal, Weiss, & Pavageau, 2006; Gobron, Pinty, Verstraete, &
Widlowski, 2000; Knyazikhin, Martonchik, Myneni, Diner, & Running,
1998; Pinty et al., 2007) that gives rise to observed spectral characteris-
tics of the land surface have led to the definition of physically-based
parameters that in turn describe the current state of healthy vegetation.
Vegetation indices, such as the Normalized Difference Vegetation Index
(NDVI) and the Enhanced Vegetation Index (EVI), are used to empirical-
ly diagnose the current state of vegetation and act as proxies for FAPAR
(Donohue, McVicar, & Roderick, 2009; Liang et al., 2012; Myneni &
Williams, 1994; Pinty, Lavergne, Widlowski, Gobron, & Verstraete,
2009). Leaf Area Index (LAI), a key land-surface parameter related to
vegetation biomass and canopy structure, is a physically-based parame-
ter and an intrinsic characteristic of the land surface (Pinty, Andredakis,
et al., 2011). By contrast, FAPAR is a component of the land-surface radi-
ation budget, and is estimated following its closure.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2013.08.037&domain=pdf
http://dx.doi.org/10.1016/j.rse.2013.08.037
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Satellite remote sensing has thus revolutionised our ability to char-
acterise andmonitor vegetation dynamics on a global scale. In combina-
tionwith terrestrial land-surfacemodels (Haverd et al., 2013; Jung et al.,
2008; Kaminski et al., 2012; Knorr et al., 2010; Seixas, Carvalhais, Nunes,
& Benali, 2009; Sellers et al., 1997), remote sensing can be used to
constrain or otherwise inform the spatio-temporal dynamics of vegeta-
tion cover and better understand terrestrial carbon and water cycles.
However, different satellite products show considerable disagreement
(McCallum et al., 2010; Meroni et al., 2012; Seixas et al., 2009). These
differences are due to several factors, including variations in the specific
definition of FAPAR (such as whether a FAPAR estimate pertains to
direct or indirect radiation).

Differences between products raise questions about the sensitivity
of land-surface models to inconsistencies between products. For in-
stance, McCallum et al. (2010) compared four FAPAR products over
northern Eurasia. The highest level of inconsistency across the products
occurred within the dominant vegetation type of mixed forests and
needle-leaf forests. Improved consistency was observed within decidu-
ous broadleaf forest and cropland. Meroni et al. (2012) evaluated three
SPOT-VEGETATION based FAPAR products in three separate regions
of contrasting bio-climatic characteristics (SW Brazil, northern Niger
and southern France). The three products, using different algorithms,
exhibited generally low to moderate agreement.

Seixas et al. (2009) compared the Moderate Resolution Imaging
Spectroradiometer (MODIS) and MEdium Resolution Imaging Spec-
trometer (MERIS) FAPAR products over the Iberian Peninsula for 2003.
MERIS routinely underestimated FAPAR and displayed greater spatial
homogeneity than MODIS, despite high agreement in NDVI from both
products. Consistent with McCallum et al. (2010), FAPAR agreement
was somewhat dependent on biome type. Following parameter re-
tuning of the Carnegie–Ames–Stanford Approach (CASA) model (Field,
Randerson, & Malmström, 1995; Potter et al., 1993) for each satellite
product, Seixas et al. (2009) identified reasonable agreement in site-
based Net Primary Production (NPP)/Net Ecosystem Exchange (NEE)
estimates, but a remaining discrepancy in seasonality was identified.
Haverd et al. (2013) used two FAPAR products derived from MODIS
and the Advanced Very High Resolution Radiometer (AHVRR)
(Donohue, Roderick, & McVicar, 2008, data available at http://data.
auscover.org.au) to drive a terrestrial land-surface model over
Australia from 1990–2010. Despite parameter retuning of the land-
surface model for each FAPAR product (resulting in highly consistent
continental mean estimates of NPP), regional differences in NPP of
up to 15% were identified. Seasonal discrepancies in FAPAR were
identified as a key contributor to seasonal discrepancies in NPP.

The objectives of this paper are (1) to assess the degree of consisten-
cy of six global satellite FAPAR products across the Australian continent,
using three geographical classifications based on drainage units and
vegetation types; and (2) to identify where and why the products are
inconsistent. The satellite FAPAR products are further evaluated against
~800 in-situ estimates of vegetation fractional cover (spatial scale
~100 m × 100 m) at ~600 field sites across Australia.

2. Data & methods

This section is divided into three main sub-sections: 2.1. Study Area,
2.2. Datasets and 2.3. Methods.

2.1. Study region: bio-climatic characteristics of Australia

Australia is the driest inhabited continent. Mean annual rainfall
(1990–2011) is 493 mm.a−1 (61% of the global average, Haverd et al.,
2013), with much of central Australia receiving b250 mm.a−1. Annual
runoff is ~70 mm.a−1 (or 14% of precipitation, Haverd et al., 2013),
highlighting high rates of evapotranspiration. Northern Australia has a
tropical dry, monsoonal climate. Climate zones in southern Australia
are predominantly Mediterranean, and warm or cool temperate. The
east coast of Australia including Tasmania, receives reliable rainfall
throughout the year. Small pockets of tropical and temperate rainforest
exist in northern and southern Australia respectively amongst areas of
wet Eucalypt forest.

Seasonal dynamics in vegetation vary significantly in phase and am-
plitude across Australia, dictated by opposing seasonal rainfall patterns
in northern and southern Australia. Seasonal green-up in northern
Australia coincideswith the onset of the Australianmonsoon, beginning
in summer (DJF) and extending into autumn(MAM). Seasonal green-up
in southern Australia begins in winter (JJA) and extends into spring
(SON). Isolated regions in southern Australia exhibit seasonal green-
up maxima andminima in summer (DJF) and winter (JJA) respectively.
Seasonal dynamics in vegetation are generally dominated by grassy
vegetation, as Australian woody vegetation is predominantly evergreen
(Donohue et al., 2009).

2.2. Data products used in study

2.2.1. Satellite FAPAR products
The land-surface interacts with PAR through absorption and scatter-

ing of incoming PAR. Radiation flux components must be accounted for
in a budget framework following the conservationof energy to reconcile
incoming PAR with the measured outgoing PAR at the top-of-canopy
(Eq. 1). An additional horizontalflux contribution becomes insignificant
relative to vertical radiant fluxes at low spatial resolutions typical of sat-
ellite remote sensing products (Widlowski, Pinty, Lavergne, Verstraete,
& Gobron, 2005). The definition of FAPAR may also vary between prod-
ucts: FAPAR may relate only to direct solar radiation (‘instantaneous
FAPAR’), diffuse radiation or include both indirect/diffuse radiation.
The FAPAR estimate may also relate to a particular instant in time.

This paper considers the inter-comparison of six satellite-derived
global FAPAR products. The products are generated from different
models, using different optimisation techniques and space-borne mea-
surements from instruments with different specifications (e.g. spectral
bands and measurement precisions). The products also correspond to
various definitions of FAPAR. Table 1 provides a detailed summary of
each FAPAR product.

2.2.1.1. MODIS FAPAR. The MODIS LAI and FAPAR collection 5 products
(MOD15A2 and MYD15A2 from Terra and Aqua respectively) are
derived from the inversion of a 3D radiative transfer (RT)model that ac-
counts for the heterogeneity (3D structure) of vegetated land-surfaces
primarily at the canopy scale (Knyazikhin et al., 1998, 1999; Myneni
et al., 2002). Top-of-canopy bidirectional reflectance factors (BRFs)
and associated uncertainties from up to seven MODIS spectral bands
are used in the inversion and optimisation of the 3D RT model.

A look-up-table is used to identify state-vector solutions (including
LAI) consistent with observed top-of-canopy BRFs, from which the
mean state-vector is taken as the optimal solution. FAPAR is then esti-
mated from closure of the surface radiation budget. Essential to the
MODIS optimisation algorithm are 8 classes of MDC12Q1 global biome
classification (Section 2.2.3). The classification makes assumptions
on vegetation characteristics (structure/scattering properties/canopy
height), degree of heterogeneous cover, soil type and colour and cli-
mate. An NDVI-based backup algorithm is applied following the
failure to identify an optimal solution. The MODIS FAPAR used here
(MOD15A2) is stated as being the FAPAR arising from direct (10:30 h
equatorial crossing time) and diffuse radiation (Knyazikhin et al., 1998).

2.2.1.2. MERIS and SeaWiFS FAPAR product. The JRC FAPAR product
(Gobron, Pinty, Taberner, et al., 2006; Gobron, Pinty, Aussedat, et al.,
2006; Gobron et al., 2008) is derived from a generic vegetation index
(Gobron et al., 2000) applicable to any satellite instrumentwith spectral
bands in the near-infrared (NIR), red and blue bands (e.g. Gobron, Pinty,
Aussedat, et al., 2006; Gobron, Pinty, Taberner, et al., 2006; Gobron,
Pinty, Verstraete, & Govaerts, 1999; Gobron, Pinty, Verstraete, &

http://data.auscover.org.au
http://data.auscover.org.au


Table 1
Technical details of the six satellite-derived FAPAR products.

MODIS MERIS SeaWiFS MODIS-TIP VEGETATION AVHRR

Platform Terra EnviSat OrbView-2(SeaStar) Terra & Aqua SPOT VEGETATION (VGT) NOAA EOS AVHRR
Instrument MODIS MERIS SeaWiFS MODIS VEGETATION AVHRR
Version 5
Spatial resolution (deg) 0.01° 0.01° 0.01° 0.01° 0.01° 0.01°
Temporal resolution (days) 8 10 10 16 10 30
Time-series (year) 2000–present 2003–2012 1997–2006 200–present 1999–present 1980–2006
Input

Spectral band (VIS-NIR) 7 3 3 2 3 2
Spectral band uncert. Y Y Y Y Y N
BRFs Y Y Y N Y N
Albedo N N N Y N N
Spectral region N/A N/A N/A VIS/NIR N/A N/A

Radiance type Top-of-canopy Top-of-atmosphere Top-of-atmosphere Broad-band sfc albedo Top-of-canopy Top-of-atmosphere
ATM correction RT Blue band Blue band RT RT N

RT model inversion Y Y Y Y Y N
Type 3D 1D 1D 1D Two-stream 1D N/A

Optimisation method Look-up tables Based on RT models Based on RT models Bayesian inversion Neural network N/A
Prior information 6-class biome classif. N N A priori PDFs⁎ N N/A
Back-up algorithm NDVI N N N N N/A
Rescalling of FAPAR data N N N N Y Y
Cross-instrument calibration N/A N/A N/A N/A Y Y
Calibration (field site) dataset Y Y Y N Y N/A
Post model-fit assessment N N N Y N N
Validation references Myneni et al., 2002 Gobron, Pinty, Aussedat, et al., 2006;

Gobron et al., 2007; Gobron et al., 2008
Gobron, Pinty, Taberner, et al., 2006,
Gobron, Pinty, Aussedat, et al., 2006

Pinty et al., 2008; Pinty, Jung, et al.,
2011

Baret et al., 2007 Donohue et al., 2008

Output
FADAR Yes Yes Yes Yes Yes NDVI rescaling
FADAR definition FADAR from direct (10:30 h) &

diffuse radiation
Instantaneous green FAPAR based
on direct (10:00 h) radiation

Instantaneous green FAPAR based
on direct (12:05 h) radiation

FAPAR/GREEN from diffuse
radiation

FAPAR at 10:15 local
solar time

Full FAPAR from
direct radiation

LAI Yes No No Yes Yes No
Data provider NASA/Boston University JRC–EC JRC–EC JRC–EC GeoLand2 CSIRO

2nd provider AusCover–CSIRO N/A N/A N/A N/A AusCover–CSIRO
Data source ftp://ladstp.nascom.nasa.gov/

www.auscover.org.au
www.fapar.jrc.it www.fapar.jrc.it www.fapar.jrc.it www.geoland2.eu www.auscover.org.au

Notes: MODIS-TIP Spatial/temporal resolutions of 500 m/8-days are possible. The use of spectral bands in place of broadband albedo is also possible.
⁎ A prior PDFs on all model parameters.
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Taberneret, 2002; Meroni et al., 2012). Top-of-atmosphere radiance
measurements from MERIS/SeaWiFS are normalised to account for
angular variations in illumination and observation geometries. The
normalised red and NIR bands are then ‘rectified’ using the blue
band to account for atmospheric scattering. Rectification involves ra-
tios of polynomial functions of the red/blue and NIR/blue bands respec-
tively, the coefficients (P) of which are optimised throughRTmodelling.
FAPAR is then computed as a function of the rectified red/NIR bands and
the polynomial coefficients P.

A 1D (horizontally homogeneous) semi-discrete land-surface-
atmosphere coupled RT model (Gobron, Pinty, Verstraete, & Govaerts,
1997; Vermote, Tanré, Deuze, Herman, & Morcette, 1997) was used to
model vegetation canopy characteristics and generate a training
dataset. The FAPAR represents the instantaneous FAPAR of vegetation
under direct illumination (10:00 h equatorial crossing time, Gobron
et al., 1999). Accuracy is approximately ±5–10% and agreement with
in-situ estimates over different canopy types is ±0.1 (Gobron, Pinty,
Taberner, et al., 2006; Gobron et al., 2008).

2.2.1.3. MODIS-TIP. The MODIS-TIP FAPAR/LAI products are generated
from the optimisation of a 1D two-stream RT model (JRC-TIP, Pinty
et al., 2006) using MODIS VIS/NIR white-sky (bi-hemispherical) al-
bedo (MCD43B3.005) in place of multiple spectral bands (Pinty,
Andredakis, et al., 2011). Fundamental land-surface spectral charac-
teristics are maintained by the land-surface albedo while issues re-
lated to observation and illumination geometries can be negated as
broadband albedo integrates across both angular and spectral do-
mains. Bayesian inversion techniques (Tarantola, 2005) are used to
optimise the RT state-vector from the observed albedo constraints.
A priori Probability Distribution Functions (PDF) of all seven state-
vector parameters (including effective LAI) must be defined and
the resulting parameter solutions are a set of a posteriori PDFs. Clo-
sure of the surface radiation budget (providing estimates of FAPAR)
is achieved after running the JRC-TIP model forward with the set of
optimised RT parameters.

Two versions of theMODIS-TIP FAPAR/LAI product are available. The
STANDARD and GREEN versions differ in constraints placed on leaf
(vegetation canopy) scattering properties (e.g. leaf colour) in the
NIR. All models require the specification of leaf scattering properties
and may either be (1) assigned to a fixed, generic parameter value
(e.g. MERIS/SeaWiFS), (2) parameterised depending on BIOME type
(MODIS) or (3) a parameter optimised by the inversion procedure
(MODIS-TIP). All products evaluated here, including the MODIS-TIP
STANDARD version, use a leaf scattering specification of an average
leaf (or standard leaf scenario, see Pinty, Andredakis, et al., 2011 for
details). The MODIS-TIP GREEN version uses a different leaf scattering
specification (in the form of a different a priori PDF) that is more appli-
cable to a typical green leaf scenario (Pinty, Andredakis, et al., 2011).
The STANDARD version is interpreted as the total FAPAR arising from
green and non-green vegetation. The GREEN version is interpreted as
the FAPAR arising if all vegetation is assumed to be green, as dictated
by constraints on the leaf scattering parameter. The different scattering
properties result from themore efficient scattering of NIR by green veg-
etation relative to non-green (yellow/brown) vegetation, thus requiring
less effective leaf area (LAI) to generate an equivalent observed signal
(Pinty et al., 2009).

2.2.1.4. SPOT-VEG. The Geoland2 Core Mapping Service BioPar provided
the SPOT-VEGETATION (SPOT-VEG) GEOV1 FAPAR product (Baret et al.,
2013). The product is based on the CYCLOPES FAPAR product (Baret
et al., 2007) but has been combined with the MODIS collection 5
FAPAR product (Myneni et al., 2002) and linearly scaled from 0–1 to
generate the ‘fused’ GEOV1 product (Baret et al., 2013; Meroni et al.,
2012). Justification for creating a fused productwas to limit deficiencies
in low/high FAPAR values for MODIS/CYCLOPES respectively, while tak-
ing advantage of other qualities of each product, including similarities in
FAPAR definition and observation geometry (Baret et al., 2013). The
product is thus not completely independent of the MODIS product
used in this study. GEOV1 FAPAR corresponds to instantaneous value
at 10:15 h local solar time.

The original CYCLOPES FAPAR product was generated using the
Scattering by Arbitrarily Inclined Leaves (SAIL) 1D radiative transfer
model (Verhoef, 1984) optimised via a neural network (Bacour et al.,
2006; Baret et al., 2007). The full time-series consists of observations
from two VEGETATION instruments on board SPOT-4 (launched 1998)
and SPOT-5 (launched 2002), requiring a preliminary step of
instrument cross-calibration. Cloud/cloud-shadow screening, a model-
based atmospheric correction and conversion to top-of-canopy Bidirec-
tional Reflectance Factors (TOCBRFs) by accounting for observation and
illumination geometries were then applied. The SPOT-VEG retrieval of
LAI/fCOVER, including training of the neural network, utilises spectral
bands in the red, NIR and SWIR only. The blue spectral band is not
used for atmospheric correction due to excessive noise (Baret et al.,
2007). Closure of the surface radiation budget is achieved after running
the RTmodel forwardwith the optimised state parameters, thus provid-
ing estimates of FAPAR. Similar to the MERIS FAPAR product, a calibra-
tion (or training) dataset has been used and is representative of any
land-surface type.

2.2.1.5. AVHRR.AVHRRdata have been available since the launch of early
National Oceanic andAtmospheric Administration (NOAA)weather sat-
ellites. The value of an AVHRR-based product is the long time-series of
data, despite limitations arising from broad-spectral bands, out-dated
technology and difficulties in cross-instrument calibration. Data ex-
tends back to 1981 and allows for long-term temporal trend analyses
(e.g. Donohue et al., 2009). The AVHRR product produced for Australia
(Donohue et al., 2008) was not generated from an optimised RT
model but is instead based on the NDVI.

Cross-instrument calibration, a significant issue across five separate
AVHRR instruments, is achieved by considering the ‘cover triangle’
formedby the red andNIR reflectances in red/NIR spectral space. Impor-
tant features of this triangle are the soil line and the ‘dark point’ (see
Donohue et al., 2008 for details). Successful cross-instrument calibra-
tion results from the adjustment of red/NIR AVHRR radiances from
each sensor such that the cover triangle is invariant in time. Anchoring
the soil line and dark point requires both bright and dark geographic
targets (salt lakes and water bodies respectively) that have a time
invariant albedo. FAPAR estimates were then calculated by rescaling
the NDVI values to 0–0.95 (Donohue et al., 2008).

2.2.2. Vegetation fractional cover
Two datasets, consisting of in-situ and satellite-derived estimates of

vegetation fractional cover, are used in this study. Both datasets consist
of the fractional cover of three classes: photosynthetically activemateri-
al (PV), non-photosynthetically activematerial (NPV) and bare soil (BS).
Both datasets conform to the definition of fraction cover (of PV/NPV/BS)
as that over the background from a nadir viewpoint.

2.2.2.1. In-situ estimates.An extensive database of ~800 in-situ vegetation
fractional cover (FC) estimates across Australia was compared with
satellite-derived FAPAR estimates. The in-situ dataset (hereinafter re-
ferred to as the FC-dataset) contains FC field measurements (Muir et al.,
2011) obtained from the following field campaign programme and
datasets: (1) State-Wide Land Cover And Trees Study (SLATS) from the
Department of Environment and Resource Management, Queensland;
and (2) the Australian ground cover reference sites database from the
Australian Bureau of Agricultural and Resource Economics and Sciences.

The FC-dataset (Fig. 1A) consists of in-situ estimates of PV, NPV and
BS at three defined vegetation levels: ground cover (PV/NPV/BS frac-
tions that sum to 1), mid-story vegetation (PV/NPV fractions at b2 m)
and over-story vegetation (PV/NPV fractions at N2 m). Typical field-
site dimensions are 100 m × 100 m (~1 ha). Where possible, sites



Fig. 1. A: Spatial coverage of in-situ estimated vegetation fractional cover (FC-dataset). Colour scale indicates PV fractional cover. B: Drainage divisions across Australia. NE Queensland
(1), SE Australian coast (2), Tasmania (3), MDB (4), Western Australia Coast (6, 7), Northern Australia (8, 9), Central Australia (5, 10, 11) and the Western Plateau (12).
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were chosen to be representative of the vegetation cover at larger
spatial scales typical of satellite products. Appendix A describes the
sampling strategy applied (Muir et al., 2011) and the calculation of the
total exposed PV/NPV/BS fractional cover apparent from above the can-
opy (hereinafter referred to as PV-FC, NPV-FC and BS-FC respectively).

2.2.2.2. Satellite-derived estimates. A satellite-derived MODIS vegetation
fractional cover product for Australia (hereinafter referred to as the
SD-FC product) (Guerschman et al., 2009) consists of the fractional
cover of three end-member classes: photosynthetic-active material
(PV), non-photosynthetic active material (NPV) and bare soil (BS).
These end-members are derived from two spectral indices: the NDVI
and the ratio of MODIS bands 7 (~2100 nm) and 6 (~1650 nm) that is
sensitive to spectral characteristics of dry/woody vegetation matter in
the short-wave infrared (SWIR) spectral region. The product was vali-
dated using both field data and Hyperion hyperspectral satellite data
over northern Australia (Guerschman et al., 2009) and ongoing field
campaign programmes.

2.2.3. Region classifications across Australia
Three geographic classifications are used in this study. One classifi-

cation is based on drainage divisions (Fig. 1B), with each division
consisting of an amalgamation of individual drainage basins (NLWRA,
2000, 2001). A set of eight drainage divisions is used in this study:
North-East Queensland Coast
 Western Australian Coast

South-East Australian Coast (NSW/VIC)
 Northern Australia

Tasmania
 Central Australia

Murray–Darling Basin (MDB)
 Western Plateau
The second geographic classification, the National Vegetation Infor-
mation System (NVIS), is based on vegetation type (NVIS, 2007). The
classification consists of 27 vegetation groups (e.g. tropical and temper-
ate rainforest, Eucalyptus forests, woodlands, shrublands, savanna and
grasslands, and cleared agricultural land). The third geographic classifi-
cation is the MODIS global biome classification (MDC12Q1, updated
annually). Eight biomes from this classification are used in the MODIS
LAI/FAPAR product retrieval:
Broadleaf evergreen trees
 Shrublands

Broadleaf deciduous trees
 Savanna

Needle-leaf evergreen trees
 Grasslands & cereal crops

Needle-leaf deciduous trees
 Broadleaf crops
2.3. Evaluation of the global FAPAR products: methodology

The methodology devised to evaluate the six global FAPAR products
over Australia consists of two approaches: 2.3.1. An evaluation based on
direct comparisonswithin different geographic regions across Australia;
and 2.3.2. An evaluation using in-situ and satellite-derived estimates of
vegetation fractional cover, categorised by vegetation type/biome.

2.3.1. Evaluation based on direct comparisons between products
The FAPAR time-series from each productwas partitioned into a sea-

sonal and a base-level component, hereinafter referred to as recurrent
and persistent FAPAR. The components are associated with recurrent
(grassy) and persistent (woody) vegetation biomes (Donohue et al.,
2009) and the partition algorithm (Appendix B) follows Donohue
et al. (2009), Lu, Raupach, McVicar, and Barrett (2003) and Roderick,
Noble, and Cridland (1999). Seasonal variation and long-term, base-
level changes in FAPARwere then evaluated separately by directly com-
paring all products within each drainage division (Section 2.2.3) across
Australia.

2.3.2. Evaluation based on comparisons to vegetation fractional cover
FAPAR product evaluation using a physically consistent independent

estimate is not possible in Australia due to a lack of in-situ FAPARmea-
surements. An extensive database of in-situ estimated vegetation
fractional cover can instead be used, augmented by a similarly defined
satellite-derived product.

Healthy, green and photosynthetically active vegetation exhibits
very little scattering of PAR (i.e. green vegetation is close to a ‘black-
leaf limit’). Incoming PAR is instead absorbed by the vegetation or
passes through gaps in vegetation cover unhindered. Therefore, one
can write (Pinty et al., 2009):

Aveg u0;λVISð Þ≈1−TUncoll
Veg u0ð Þ ð2Þ

Aveg u0;λvisð Þ≈1−e−k
LAI u0ð Þ

u0 ð3Þ

In addition, Gobron, Pinty, Taberner, et al. (2006) showed that:

Aveg u0;λVISð Þ≈FIPAR u0ð Þ ð4Þ

with a typical error of ~0.1, where FIPAR is the Fraction of Intercepted
PAR. Eq. (2) suggests that the theoretical relationship between FAPAR
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and FC is ~1:1. Radiative transfer simulations using the CanSPART two-
stream radiative transfer scheme (Haverd et al., 2012; Lovell, Haverd,
Jupp, & Newnham, 2012) reveal a sensitivity range between FAPAR
and FC of 0.96–1.17, a result consistent with that provided by Pinty,
Clerici, et al. (2011)). Details of the CanSPART simulations are given in
Appendix C. Based on theCanSPART simulations andprevious literature,
we assume that:

Aveg u0;λVISð Þ≈FIPAR u0ð Þ≈FCover u0ð Þ ð5Þ

Note:

Aveg(u0,λVIS) The fraction of absorbed PAR (FAPAR)
TVeg
Uncoll The fraction of PAR transmitted through the canopy that
has not collided (interacted) with vegetation

u0 Cosine of the sun zenith angle
LAI Effective LAI
k 0.5
FIPAR(u0) Fraction of intercepted PAR
FCover(u0) Fraction of vegetation cover

One can estimate FAPAR from vegetation FC and calculate the re-
sulting effective LAI via a commonly used Beer–Bouger–Lambert's
relationship (Eq. 3). This 1:1 relationship provides a basis for evaluating
FAPAR estimates using in-situ FC estimates (specifically PV-FC).

To compare against the in-situ field estimates of PV-FC, the satellite
3Ddata cubeswere sampled at their respective native spatial resolution.
Extracted FAPAR estimates were obtained at the same location in space
and time to in-situ FC estimates, employing linear interpolation be-
tween adjacent satellite grids where appropriate. Certain products pro-
vide a single time-stamp for each satellite gridwhereas others provide a
time period for which the satellite grid is considered representative.
Spatial sampling involved extracting FAPAR estimates from the pixel
closest to the field site location as well as an average FAPAR estimate
from a 3 × 3 pixel-matrix overlying the field site. The FC field sites
were also stratified using the NVIS vegetation group classification and
8 classes of the MODIS biome classification.

To compare against the satellite-derived estimates of PV-FC, the sat-
ellite 3Ddata cubeswere resampled to the resolution of the SD-FC prod-
uct. Regions of homogeneous fractional cover (RHFC) of PV, NPV and BS
(fractional cover N80%) were identified at each time-step (tf) from the
fractional cover product time-series. The corresponding mean FAPAR
estimate from each FAPAR product within each RHFC was then extracted
at the time-step closest to tf. A FAPAR time-series for regions of homoge-
neous cover of PV, NPV and BS was thus generated for each product.

3. Results

3.1. Evaluation based on direct comparisons between products

3.1.1. Comparison of mean FAPAR estimates
Fig. 2A presents the overall mean FAPAR climatology (MFC). The an-

nual FAPAR climatology of each satellite product, calculated over the
entire time-series of each product respectively, was used to generate
the MFC. Annual climatologies calculated over a common time-period
(2003–2006) generated a similar MFC (not shown) to that provided in
Fig. 2A. Continental-scale spatial gradients in FAPARmirror annual rain-
fall gradients across Australia (Fig. 2B), with a divergence occurring in
Northern Australia due to factors limiting productivity during certain
times of the year. Correlated spatial gradients in FAPAR and precipita-
tion, evident in Fig. 2A and quantified within different drainage basins
(Section 2.2.3, Fig. 1B) in Table 2, are consistent with water limitation
impacting productivity across much of mainland Australia.

Fig. 3 presents the difference between each FAPAR annual climatol-
ogy and theMFC. Using theMFC as a reference, the degree to which any
single product differs from other products is clearly related to the
density of vegetation cover. The degree to which products differ from
the MFC is therefore both spatially heterogeneous and associated with
FAPAR spatial gradients.

3.1.2. FAPAR persistent component comparison
Fig. 4 presents the time-series of the persistent FAPAR component

from each product within different Australian drainage divisions. Aver-
aging across Australia (1), the spread across the products is uniform
with no apparent outlier. In highly vegetated coastal regions (e.g. NE
Queensland (2), SE Australia coast (3)), MERIS and SeaWiFS generate
relatively low FAPAR estimates. A similar result (not shown) occurs in
NVIS-classified forested regions across Australia and at forested flux
tower sites such as Tumbarumba (Leuning, Cleugh, Zegelin, & Hughes,
2005) and Wallaby Creek (Kilinc, Beringer, Hutley, Haverd, & Tapper,
2012) (see ozflux.org.au). In Tasmania (4), there is a particularly large
spread across the products. Overall, the degree of clustering amongst
the different products changes across the continent.

Temporal features consistent across all products are nonetheless
evident in Fig. 4. A clear positive FAPAR anomaly from late 2010 through
to 2012 is present in most regions, associated with anomalously high
annual rainfall and hydrological recharge across much of the continent
(National Climate Centre, 2012, Boening, Willis, Landerer, Nerem, &
Fasullo, 2012; Fasullo, Boening, Landerer, & Nerem, 2013). The effects
of severe drought conditions persisting across eastern Australia during
the 2000s are also evident, particularly in the Murray–Darling Basin
(5). Anomalously low FAPAR estimates occur in 2003, 2007 and 2009.
For products extending back into the 1990s, the 2000s are identified
as having persistently low FAPAR due to prolonged periods of below-
average rainfall in the Murray–Darling Basin (Daniell, 2009; McGrath
et al., 2012; Murphy & Timbal, 2008; Ummenhofer et al., 2009).

3.1.3. FAPAR recurrent (seasonal) component comparison
Fig. 5 presents the seasonal climatology (recurrent FAPAR compo-

nent, smoothed using a 1-month moving average) for all products in
each drainage division. While all products show agreement in seasonal
phase (excluding Tasmania, 4), seasonalmagnitudes inmost regions are
clearly different. SPOT-VEG and AVHRR routinely showgreater seasonal
magnitudes whereas MODIS, MERIS, SeaWiFS and MODIS-TIP show
reduced magnitudes. The shape in seasonality as well as the timing in
seasonal maximums/minimums also varies. In northern Australia (7)
where the summer monsoon (Dec–Apr) dictates seasonal green-up in
tropical dry savannas and woodlands, timing in the seasonal maximum
varies by ~30 days amongst the products. Rates of senescence following
the seasonal maximum also vary.

The seasonalwinter/spring green-up (Jun–Nov) along the SE coast of
Australia (3) is particularly inconsistent, with some products indicating
a broad seasonal maximumwhereas others show a relatively short sea-
sonal maximum. Note the disagreement between MERIS and SeaWiFS,
overall found to be in high agreement. Seasonal variation in Tasmania
(4) is also inconsistent, where different regions within Tasmania have
opposing seasonal modes: maxima/minima in summer/winter and
maxima/minima in winter–spring/summer (typical of SE Australia).

3.2. Evaluation based on comparisons to vegetation fractional cover

3.2.1. Comparison with in-situ field measurements of PV, NPV and BS
Fig. 6A plots satellite-derived FAPAR against in-situ estimated vege-

tation fractional cover (specifically PV-FC, see Section 2.2.2). The plotted
FAPAR estimates were obtained from the closest single pixel to the
reported field-site location. Little discernable difference was observed
when plotting the average FAPAR estimate from a 3 × 3 pixel-matrix
overlying the field site. Table 3 provides summary statistics of the linear
regression between PV-FC and FAPAR (corresponding to the dashed
line-of-best-fit in Fig. 6A). No product produces a ~1:1 relationship
between FAPAR and PV-FC and all products show different sensitivities
of FAPAR to PV-FC (coefficient of linear regression in Table 3). Note the



Fig. 2. A: MFC — annual mean FAPAR climatology. B: Mean annual precipitation (mm).

Table 2
Spatial correlation between the mean FAPAR climatology (MFC) and precipitation
climatology (Fig. 2) for each drainage division listed in Section 2.2.3 and Fig. 1B.

Drainage division Spatial correlation

North-East Queensland Coast 0.72
South-East Australian Coast (NSW/Vic) 0.66
Tasmania −0.08
Murray–Darling Basin (MDB) 0.82
Western Australian Coast 0.82
Northern Australia 0.78
Central Australia 0.75
Western Plateau 0.43
Australia 0.73

Fig. 3.Differencemaps between the individual annual FAPAR climatology for eachproduct
and the mean FAPAR climatology (MFC, Fig. 2A) across all products.
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difference in sensitivities between the two versions of the MODIS-TIP
product (Table 3 ), related to the standard-leaf/green-leaf scenarios.
All products show differing levels of scatter around the line-of-best-fit
(Lin. Reg. SD in Table 3,). Some products (MODIS, MODIS-TIP, AVHRR)
show a positive offset in FAPAR within regions of little or no PV fraction
(Intercept in Table 3). Other products (MERIS/SeaWiFS/SPOT-VEG)
appear on average to correctly identify regions of very low PV-FCwithin
specified uncertainty tolerances of ~0.1 (Gobron, Pinty, Taberner, et al.,
2006; Gobron et al., 2008).

Fig. 6A indicates the fraction of over-story (green) vegetation
(N2 m) contributing to PV-FC. High proportion of over-story vegetation
cover represents field sites in forested biomeswhile the remaining sites
lie in regions of significant ground cover (e.g. grassland, savannah,
shrubland and agricultural biomes). This stratification clearly identifies
two groups of field sites with similar estimates of PV-FC but consider-
ably different FAPAR estimates from MODIS and SPOT-VEG. Excluding
field sites with over-story fractional cover N0 results in a similar fit to
the in-situ data across all products and no remaining site differentiation
(Table 4). SPOT-VEG retains a somewhat higher sensitivity in FAPAR
with increases in PV-FC.
Fig. 6B repeats the scatter plots of Fig. 6A but indicates the MODIS
land-cover biome classification (MDC12Q1) for each field site (see
Section 2.2.3). Similar to Fig. 6A, field sites classified as primarily broad-
leaf evergreen generate considerably higher MODIS FAPAR estimates
relative to other biomes with the same level of PV-FC. Most field sites
with a significant level of over-story PV fractional cover (Fig. 6A) are
correctly classified as forest. This suggests that, with the available
MDC12Q1 biome classes, land-cover miss-classification across the field
sites is not a significant problem.
3.2.2. Comparison to the satellite-derived fractional cover product
Fig. 7A presents the FAPAR time-series for the 6 products in regions

of predominantly PV, NPV and BS. Table 3 provides statistics related to
the time-series presented in Fig. 7A. Fig. 7B presents the number of
grids where the fractional coverage from the SD-FC product is N80%
for PV, NPV and BS. Homogeneous cover in PV and BS frequently occur
in coastal regions and central Australia respectively. Areas of homoge-
neous NPV occur infrequently in relatively small, contiguous regions.



Fig. 4. Time-series of the different FAPAR satellite products (persistent vegetation component) for Australia and 8 Australian drainage divisions. The plots on the right present the frequen-
cy histograms of each product (full FAPAR signal) for each region.

248 C.A. Pickett-Heaps et al. / Remote Sensing of Environment 140 (2014) 241–256
Immediately apparent from Fig. 7A are different base-level FAPAR
estimates in regions of little or no green vegetation cover (NPV and BS
time-series). MERIS, SeaWiFS and SPOT-VEG generate FAPAR estimates
of b0.05 whereas MODIS, MODIS-TIP and AVHRR show a significant
positive offset (Table 3). These offsets are consistent with those appar-
ent from comparisons to in-situ PV-FC estimates (Fig. 6, Table 3) and
largely explain why products differ in the semi-arid regions of central
Australia.

After accounting for offsets in base-level FAPAR, mean FAPAR esti-
mates in regions of predominantly PV fractional coverage (green vege-
tation) also differ (range in FAPAR in Table 3). SPOT-VEG generates the
highest FAPAR. MERIS/SeaWiFS/MODIS-TIP generate low FAPAR, con-
sistent with systematically low FAPAR in regions of dense vegetation
coverage (e.g. SE coast of Australia, Fig. 4).

The differences in FAPAR sensitivity to PV-FC identified in Fig. 7A are
consistent with the differences in sensitivity identified from compari-
sons to in-situ field data (Fig. 6, Table 3). The close association between
in-situ estimated sensitivity and biome type likely extends to a larger
spatial scale provided by the SD-FC product, with biome type influenc-
ing the range in FAPAR of certain products across Australia (Table 3).
MODIS forest biomes (Fig. 6B) occur predominantly in regions of high
PV-FC (Fig. 7B). The range in SPOT-VEG FAPAR may also be a result of
global rescaling to 0–1 (Baret et al., 2013; Meroni et al., 2012). The
range in FAPAR of the MODIS-TIP GREEN version (Table 3) was found
to be less than that of the STANDARD version. Thus, in addition to
biome type, assumptions related to vegetation scattering properties in-
fluence the range in FAPAR across the continent.

A comparison between different backgrounds (BS and NPV) can be
made fromFig. 7B and Table 3,where a positive offset in FAPARbetween
a NPV background relative to a BS background may suggest a positive
contribution fromNPVmaterial to a FAPAR signal. However,most prod-
ucts exhibit an insignificant difference between the two backgrounds.
MODIS-TIP exhibits an unexpected large positive difference between
BS background relative toNPVbackground. This interesting discrepancy
should be treatedwith caution as it predominantly occurs in small, con-
tiguous regions of savanna in northern Australia (Fig. 7B) and is not ap-
parent in comparisons with in-situ data (not shown).

4. Discussion

Despite ostensibly significant disagreements, the FAPAR satellite
products do show robust spatial and temporal patterns across
Australia. Moreover, the disagreements can be partially attributed to a
consistent offset in FAPAR in some products across much of the conti-
nent. An offset may be accounted for in certain applications through
product-specific model retuning. This likely explains why different
FAPAR products used in biospheric diagnostic models (Haverd et al.,
2013; Seixas et al., 2009) generate highly consistent continental mean
NPP/NEP estimates but reduced consistency in regional estimates and
seasonal variation. The comparison of the FAPAR products to the SD-



Fig. 5. Seasonal climatology plots of the different FAPAR satellite products (recurrent vegetation component) for Australia and 8 Australian drainage divisions. Note: All seasonal plots have
been adjusted to a common seasonal minimum FAPAR value of 0.01. This aids in comparing the amplitude and timing of the seasonal maximums/minimums and rates of green-up and
senescence. A 1-month moving average smoothing filter has been applied to all seasonal climatologies except AVHRR.
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FC product is generally consistent with the comparison to the in-situ
field estimates of vegetation fractional cover.

Physically consistent in-situ field estimates have been used to vali-
date the FAPAR products (Table 5). Fensholt, Sandholt, and Rasmussen
(2004) and Huemmrich, Privette, Mukelabai, Myneni, and Knyazikhin
(2005) identified a positive bias of ~0.2 inMODIS FAPAR estimates, con-
sistent with this study. Gobron, Pinty, Aussedat, et al. (2006), Gobron
et al. (2008) estimated the MERIS and SeaWiFS FAPAR uncertainty as
~0.1, consistent with the small offsets identified here. As these uncer-
tainty estimates are based on relatively fewfield sites, their applicability
at larger spatial scales and/or within different geographical regions and
biomes may be limited. In addition, the theoretical (or simulated) un-
certainty in LAI (and consequently FAPAR) derived from remotely-
sensed observations varies non-linearly with LAI (FAPAR) (Myneni
et al., 2002; Pinty, Clerici, et al., 2011) and applies to all products. A re-
duction in sensitivity of a remotely-sensed signal to increasing LAI up
to a point of signal saturation (no sensitivity, Shabanov et al. 2005)
leads to a loss of observational constraint and an increase in parameter
uncertainty. The point of signal saturation varies depending on the
product as well as in space and time (Myneni et al., 2002) but typically
occurs at an LAI of 3–4 (Pinty, Andredakis, et al., 2011; Pinty, Jung, et al.,
2011) for MODIS-TIP and an LAI of ~3.5 for MODIS (Shabanov et al.
2005).

Fig. 8 provides an analysis of the a posteriori uncertainty (1.σ) in the
MODIS-TIP FAPAR. Minimum FAPAR uncertainty estimates are 0.4–0.5
and correspond to theMODIS-TIP base-level FAPAR estimates described
previously. As FAPAR (LAI) increases, uncertainty in FAPAR (LAI) in-
creases as expected (up to ~0.8 uncertainty in FAPAR). More surprising
is an increase in FAPAR for very low values of FAPAR (b0.3), a result re-
lated to uncertainties in soil background (Pinty, Clerici, et al., 2011). The
positive offset in base-level MODIS-TIP FAPAR mentioned previously
(Figs. 6 and 7B) is consistent with the estimated uncertainty in FAPAR.
The Bayesian inversion methodology of MODIS-TIP allows for the prop-
agation of a priori uncertainties (e.g. error in observations) through to
the state parameters (LAI, FAPAR), providing a theoretical uncertainty
across the full range of LAI/FAPAR.

The comparison of satellite-derived FAPAR to in-situ estimates
of PV-FC reveals a relationship as b1:1 for all products concerned (coef-
ficient of linear regression range: 0.30–0.57, Table 3). This is in contrast
to the expected ~1:1 theoretical sensitivity as shown previously in
Section 2.3.2. The linear 1:1 relationship between FAPAR/FIPAR and
vegetation FC is appropriate when FAPAR is measured directly. Howev-
er, remotely sensed FAPAR is obtained indirectly through closure of the
surface radiation budget, constrained by observed scattering of NIR
radiation rather than observed absorption of PAR. Perturbing effects of
the background albedo within the visible (VIS) spectrum (correspond-
ing to PAR) prevent observed changes in VIS albedo (or red BRFs) to
estimate FAPAR directly. The linear relationship between changes in
VIS and NIR albedo defines a so-called ‘soil-line’ (Chi, 2003) to account
for changes in background NIR albedo. NIR scattering (illustrated by
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positive departures from the soil-line in VIS/NIR space) is used in
remote-sensing RT algorithms to constrain estimates of effective
(domain-averaged) LAI, from which FAPAR is estimated via closure of
the surface radiation budget (Eqs. 1, 3). Departures from the soil-line
due to NIR scattering also form the basis of vegetation indices such as
the NDVI, variations of which are correlated with those of FAPAR
(Fensholt et al., 2004; Liang et al., 2012; Myneni & Williams, 1994).

The degree ofNIR scattering by vegetation (soil) is dependent on leaf
(soil) scattering properties (e.g. leaf/soil colour). Vegetation scattering
properties vary depending on vegetation species (Pinty et al., 2009),
biome type, green-leaf/standard-leaf scenarios and even leaf maturity
(young vs. mature leaves, Pinty, Jung, et al., 2011). The differences in
the regression slopes between the two versions of the MODIS-TIP
FAPAR product (Table 3) are attributed to differences in constraints on
NIR vegetation scattering properties (Pinty, Clerici, et al., 2011). Both
leaf and soil scattering properties are assigned to each MODIS biome
type (Shabanov et al. 2005; Myneni, Nemani, & Running, 1997). As-
sumed leaf scattering properties, necessary within RT retrieval algo-
rithms and averaged over a relatively large spatial domain, will impact
Fig. 6. A: Scatter plots of each FAPAR product with field estimates of PV fractional cover. Colou
exposed PV fractional cover (PV-FC) from all three vegetation levels. Error bars represent bo
represents a 1:1 relationship and dashed grey line represents the line of best fit through the d
in Fig. 6A. Also indicated is the MODIS land-cover classification (MCD12Q1) identified for each
the estimated effective LAI and resulting FAPAR estimates. Consequent-
ly, the relationship between FAPAR and FCover (such as PV-FC) will be
impacted. Departures from the correlated variation in NIR/VIS back-
ground (represented by the soil-line) and a lack of consistency in obser-
vation/illumination geometries between remotely sensed observables
(e.g. FAPAR resulting from direct and/or diffuse radiation) and in-situ
field measurements of FCover will also impact the FAPAR/FCover rela-
tionship. Finally, the observed signal due to NIR scattering is impacted
by physiological changes in vegetation (such as stress resulting from
water/nutrient constraints or leafmaturity) impacting leaf optical prop-
erties (Huemmrich et al., 2005). Such changes in the observed NIR sig-
nal will impact the retrieved LAI (and FAPAR) estimates but may not
be apparent when making in-situ estimates of vegetation fractional
cover that, in the case of the PV-FC estimates, only reflect the presence
of living vegetation. A 1:1 relationship instead acts as an upper limit:

FAPAR≤FIPAR=FCover

and is valid only under circumstances when numerous model
r bar represents the proportion of over-story PV fractional cover contributing to the total
th spatial and temporal variability of the satellite FAPAR mean estimate. Solid grey line
ata. B: Scatter plots of each FAPAR product with field estimates of PV fractional cover as
field site.



Fig. 6 (continued).
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assumptions, such as those related to vegetation/soil scattering
properties and consistency in observation/illumination geometries,
are satisfied.
Table 3
Statistics from the regression analysis (line-of-best-fit) presented in Fig. 6A. Statistics from the

In-situ FC dataset

Model No. obs R2 SS-resid X-Y correl. Lin-coeff. Inter

MODIS 820 0.47 0.13 0.69 0.49 0.15
MERIS 771 0.58 0.08 0.76 0.35 0.05
SeaWiFS 297 0.64 0.06 0.80 0.30 0.06
MODIS-TIP (STD) 770 0.46 0.11 0.68 0.40 0.17
MODIS-TIP (GRE) 770 0.45 0.09 0.67 0.31 0.15
SPOT-VEG 791 0.48 0.15 0.69 0.57 0.09
AVHRR 355 0.59 0.10 0.77 0.47 0.11

Key

In-situ FC dataset
No. obs. Nu
Lin-coeff Co
Intercept y-i
R2 R2

SS-resid Lin
Int

X-Y correl. Co

SD-FC dataset
Mean FAPAR Me

cal
Va
A number of factors thus influence the relationship between FAPAR
and FCover (Fig. 6), the range in FAPAR observed across the continent
(Section 3.2.2, Fig. 7A, Table 3) and ultimately the degree of agreement
comparison to the SD-FC dataset presented in Fig. 7A.

SD-FC dataset

Mean FAPAR Range

cept PV NPV BS PV-BS

0.73 (0.15) 0.18 (0.08) 0.15 (0.03) 0.58 (0.15)
0.44 (0.14) 0.07 (0.05) 0.02 (0.02) 0.42 (0.14)
0.47 (0.13) 0.08 (0.06) 0.03 (0.02) 0.44 (0.13)
0.58 (0.13) 0.06 (0.07) 0.28 (0.05) 0.30 (0.14)
0.48 (0.10) 0.05 (0.06) 0.25 (0.05) 0.23 (0.11)
0.80 (0.08) 0.13 (0.09) 0.06 (0.03) 0.74 (0.09)
0.78 (0.12) 0.15 (0.14) 0.13 (0.05) 0.65 (0.13)

mber of observations
efficient of linear regression between FAPAR and PV-FC
ntercept of linear regression
statistic
ear regression standard deviation (residual sum of squares)
erpreted as the scatter around the line of best fit, not the standard error of the lin-coeff
rrelation between FAPAR and PV-FC

an FAPAR estimate in regions of predominantly (N80% fractional cover) PV, NPV or BS
culated from the time-series presented in Fig. 7A
lues in brackets are the estimated standard deviation in FAPAR



Table 4
Statistics from the regression analysis (line-of-best-fit) as in Table 3 butwith the exclusion
of field sites classified as broadleaf evergreen/deciduous (MDC12Q1) in Fig. 6B.

MODEL No. obs R2 SS-resid X-Y correl. Lin-coeff. Intercept

MODIS 763 0.36 0.10 0.60 0.34 0.17
MERIS 718 0.46 0.07 0.68 0.27 0.06
SeaWiFS 233 0.64 0.05 0.80 0.27 0.06
MODIS-TIP (STD) 713 0.33 0.11 0.57 0.33 0.18
MODIS-TIP (GRE) 713 0.33 0.09 0.57 0.26 0.16
SPOT-VEG 736 0.35 0.12 0.59 0.40 0.11
AVHRR 346 0.59 0.10 0.77 0.44 0.12
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between products. An additional factor identified in this study is biome
type. Increased agreement was observed at sites classified as savanna/
grassland, shrubland and managed lands (including agricultural/
cropping land). Substantial disagreement occurs instead at sites classi-
fied as forest. MODIS exhibits a near twofold increase in FAPAR at forest
sites (consistent with sites containing a high fraction of over-story veg-
etation cover) relative to other sites despite similar in-situ estimates of
PV-FC. Biome-specific assumptions likely explain this large difference
in MODIS FAPAR, particularly those related to vegetation structure and
parameters (e.g. leaf/soil scattering properties) that have been tuned
to fit in-situ observations at field sites assigned to each biome type.
The SPOT-VEG product also exhibited a sensitivity to biome-type,
Fig. 7. A: The time-series of mean FAPAR estimates from each FAPAR product in regions pred
coverage. B: The number of grids (scaled to [0, N50]) in the SD-FC product time-series (2000–
perhaps due to the fusion of MODIS and CYCLOPES products to generate
the SPOT-VEG GEOV1 product.

The sensitivity to biome type is broadly consistent with previous
FAPAR product comparisons in other regions of the world. McCallum
et al. (2010) identified poor consistency within needle-leaf and mixed
forests, ostensibly bearing little relevance to Australian forests classified
as broadleaf evergreen (MDC12Q1). However, Australian forests have
unique features that defy easy inclusion within existing global vege-
tation classifications. Changes in surface conditions, tree density and
forest floor conditions (e.g. understory vegetation) that impact high-
latitude forests (Kobayashi, Suzuki, & Kobayashi, 2007; McCallum
et al., 2010) may also be relevant to Australian forests. McCallum
et al. (2010) identified a high level of consistency in cropland regions
between MODIS and MERIS, in particular with regard to seasonality.
A relatively high level of seasonal consistency within managed (or
agricultural) land (not shown) between the two products was iden-
tified here. Within woody savanna of northern Australia, Kanniah,
Beringer, Hutley, Tapper, and Zhu (2009) identified increased con-
sistency of MODIS LAI/FAPAR products with in-situ measurements
during the Australian dry season. This increased consistency was
linked to the absence of significant understory green vegetation,
leaving the overlying evergreen woody vegetation as the sole vege-
tation layer. During the wet season, there are two distinct vegetation
layers within the woody savannas.
ominantly consisting of PV fractional coverage, NPV fractional coverage and BS fractional
2010) identified as predominantly consisting of PV/NPV/BS (N80% fractional cover).



Table 5
Uncertainty estimates of the FAPAR products based on published comparisons to in-situ observations.

FAPAR product Citation Uncertainty/bias Field site location Field site description

MODIS Fensholt et al. (2004) ~0.2 W Africa (Senegal) Semi-arid grassland and savanna (Sahel)
Huemmrich et al. (2005) ~0.2 S Africa (W Zambia) Kalahari woodland
Steinberg, Goetz, and Hyer, (2006) 0.05–0.4 Central Alaska Boreal Forest

MERIS Gobron, Pinty, Taberner, et al. (2006),Gobron, Pinty,
Aussedat, et al., 2006; Gobron et al., 2008)

0.1 Various Various (grassland/savanna, forest, cropland)

SeaWiFS Gobron, Pinty, Aussedat, et al. (2006) 0.1 Various Various (grassland/savanna, forest, cropland)
MODIS-TIP (STD) Pinty, Jung, et al. (2011) 0.15 Central Germany Deciduous European forest
SPOT-VEG Camacho, Cernicharo, Lacaze, Baret, and Weiss (2013) 0.1 Not specified Not specified
AVHRR Not available (N/A) N/A N/A N/A
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A result consistent with previous studies (McCallum et al., 2010;
Pinty et al., 2008; Seixas et al., 2009) is a systematic difference between
the MODIS and MERIS/SeaWiFS FAPAR products, identified here as a
result of both a systematic offset in base-level FAPAR and sensitivity to
biome type. Pinty et al. (2008) found that MODIS significantly over-
estimated FAPAR relative to MERIS/SeaWiFS andMODIS-TIP at two for-
ested sites (needle-leaf evergreen, needle-leaf deciduous) that experi-
ence snow cover during the northern-hemisphere winter. MODIS was
not found to overestimate FAPAR at an additional forest site (broad-
leaf deciduous). A SPOT-VEG derived product using the same algorithm
as the MERIS product included in this study was also found to routinely
underestimate FAPAR relative to the SPOT-VEGGEOV1 product (Meroni
et al., 2012). This suggests that perhaps the algorithms employed rather
than differences in instrumentation have greater influence on the de-
gree of dissimilarity between products. Supporting this argument is
the high level of agreement between the MERIS and SeaWiFS products
observed here and elsewhere (Gobron, Belward, Pinty, & Knorr, 2010;
Gobron, Pinty, Taberner, et al., 2006). Both products are based on the
same algorithm but use sensor-specific parameter tuning.
5. Summary and conclusions

The evaluation of six global FAPAR satellite products across Australia
highlights significant disagreement amongst the products, albeit dis-
playing robust spatial and temporal patterns. These disagreements are
Fig. 8.A:Relationship betweenMODIS-TIP FAPAR and the a posteriori uncertainty in FAPAR (1.σ
the a posteriori uncertainty in effective LAI (1.σ). PV-FC indicated by the colour scale. C: Relatio
dicated by colour scale.
spatially heterogeneous, resulting in no single product identified
routinely as an outlier. These disagreements also result in differences
in seasonal variation.

The findings in this study can be summarized as follows:

- Systematic differences in (1) base-level FAPAR estimates and (2)
FAPAR sensitivity to spatio-temporal changes in vegetation cover
are themain features of thedifferences between the FAPARproducts.

- Differences in FAPAR sensitivity to increases in vegetation cover can
be attributed in part to changes in biome type (and model assump-
tions therein) but are also likely related to other factors such as the
assumed scattering properties of vegetation in the NIR.

- Differences between products depend on biome type, particularly if
systematic differences in base-level FAPAR are accounted for. Rela-
tively high agreement across the products occurs within savanna/
grassland, shrubland andmanaged land (agricultural land) classified
biomes. Particularly high disagreement occurs within forest-classified
biomes.

- Differences between products that depend on biome type are appar-
ent at the large-scale, when compared to the SD-FC product or using
a stratificationmodel defining different vegetation types. Suchdiffer-
ences are consistent at the small-scale, when compared to in-situ
estimated vegetation fractional (FC-dataset).

- A comparison between satellite-derived FAPAR and in-situ estimated
vegetation fractional cover reveals a relationship b1:1 for all FAPAR
satellite products. Reasons for this can be attributed to:
). PV-FC indicated by the colour scale. B: Relationship betweenMODIS-TIP effective LAI and
nship betweenMODIS-TIP FAPAR and PV-FC. A posteriori uncertainties in FAPAR (1.σ) in-
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⁎ Sensitivity in the assumed NIR scattering properties of vegetation
⁎ Departures from the collinearity in background albedo (reflectance)
in the VIS and NIR spectrums

⁎ Lack of consistency between the definitions of FAPAR as it applies to
each satellite product and the estimation of in-situ fractional cover

⁎ Physiological characteristics (and changes) in vegetation (such as
stress-induced changes) that impact the observed NIR scattering
signal generated by vegetation butmaynot be apparentwhenmak-
ing in-situ field estimates.
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Appendix A

In-situ estimates of vegetation fractional cover have been obtained
at ~600 field sites across Australia (Fig. 1A). The fractional cover dataset
consists of ~800 separate estimates. Each field site measures approxi-
mately 100 m × 100 m (1 ha), within which fractional cover estimates
at three vegetation levels are obtained. The sampling strategy (Muir
et al., 2011; Rickards, Stewart, Randall, & Bordas, 2012) consists of de-
termining the presence/absence of either PV, NPV or BS along a transect
at 1 m intervals for each vegetation level. Eight transects are defined in
a symmetric star orientation radiating out from the centre of the field
site. The ratio between the total counts of PV, NPV and BS respectively
and the total number of samples taken represents the fractional cover
of PV, NPV and BS for each vegetation level at the field site.

The FC estimates from the three vegetation levels must be combined
to estimate the total exposed PV/NPV/BS fractional cover apparent from
above the canopy. The exposed fraction is calculated by scaling the frac-
tional cover estimates at a particular vegetation level by the ‘uncovered
fraction’ of the vegetation level(s) above. The exposed fractional cover
of PV/NPV/BS at each level and the total PV/NPV/BS fractional cover for
the site (FCE,i) are calculated as follows:

https://rs.nci.org.au/FcSiteData/
http://data.auscover.org.au/
https://lpdaac.usgs.gov/lpdaac/products/modis_policies
http://gpod.eo.esa.int/
http://fapar.jrc.ec.europa.eu/
http://www.geoland2.eu/
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Where:

FCi,L Fractional cover at level L and veg. type i
FCeff,i,L Effective fractional cover at level L and veg. type i
FCT,L Total vegetation cover (PV & NPV) at level L
L Canopy level (1: ground cover, 2: mid-story, 3: over-story)
i Vegetation type (1: PV, 2: NPV, 3: BS)
FCE,i Total exposed cover for vegetation type i

Appendix B

The split of the full FAPAR signal into the recurrent and persistent
components follows algorithms developed by Donohue et al. (2009),
Lu et al. (2003) and Roderick et al. (1999). The algorithm, as described
by Donohue et al. (2009) is outlined as follows:

- Data dropouts (erroneous FAPAR values) are identified and re-
moved. The difference (dt) between a FAPAR estimate, ft at time t,
and themean FAPAR estimate (fm)within a 1–3 monthmovingwin-
dow centred on time t and excluding ftwas calculated. If dt exceeded
0.1, ft is flagged as a dropout and replaced by fm. A decrease of 0.1
FAPAR over one time-step is realistic if this decrease is maintained
in successive time-steps. However, such a decrease followed by an
equally large increase (recovery) is unrealistic and thus can be
flagged as an erroneous dropout. The size of the 1–3 month moving
window is dependent on the time-resolution of the satellite data.

- A 7-month moving minimum is applied to the FAPAR time-series
with the FAPAR dropouts removed (Fp1).

- A 9-month moving average is applied to the Fp1 time-series (Fp2).
- A preliminary recurrent component is calculated:

Fr1 ¼ Ft–Fp2

- The following condition is then applied to obtain the persistent
FAPAR component:

If Fr1b0; then Fp ¼ Fp2– Fr1j j

If Fr1N0; then Fp ¼ Fp2

- Fp represents the final persistent component. The final recurrent
component is calculated from the original time-series (Ft, dropouts
removed) as follows:

Fr ¼ Ft–Fp

Annual and seasonal climatologies of all FAPAR products (and
persistent/recurrent components) were generated. Climatologies over
a common time-period for all products (2003–2006)were also calculat-
ed and compared, with little difference identified between the two sets
of climatologies.

Appendix C

The theoretical relationship between FAPAR and PV-FC was derived
by simulating both quantities using the CanSPART radiative transfer
model (Haverd et al., 2012; Lovell et al., 2012): amodel of gap probability
(including canopy structure effects), coupled to a modified two-stream
radiative transfer scheme. CANSPART has been widely tested against
other canopy structure models and above-canopy reflectances (Haverd
et al., 2012), and against ground-based LIDAR observations of gap prob-
ability (Lovell et al., 2012). The range of sensitivities was obtained as
the range from simulations representing extreme vegetation structure
(unclumped to highly clumped) and leaf scattering coefficients. Specifi-
cally, simulations were performed for leaf area indices ranging from 0.2
to 5with: (i) intermediate clumping (790 stemsha-1); (ii) high clumping
(200 stems ha-1); (iii) no clumping (horizontally homogeneous
vegetation) and (iv) extreme values (+2 s.d.) of leaf scattering coef-
ficients; and (v) vertical leaf angle distribution (instead of spherical).
Mean leaf scattering coefficients and their variability were derived from
an ensemble of 50 PROSPECT (Jacquemoud & Baret, 1990) simulations
for Eucalyptus leaves, with input parameter values randomly drawn
from sampleswithmean and standard deviation derived from literature
values (Barry, Newnham, & Stone, 2009; Datt, 1998, 1999).
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