Chapter 2
Observing a Vulnerable Carbon Cycle

Michael R. Raupach and Joseph G. Canadell

2.1 Introduction

The carbon cycle and indeed the entire earth system are now inextricably linked with human activities (Global Carbon Project 2003; Steffen et al. 2004; Field and Raupach 2004), so that the ‘carbon–climate–human system’ constitutes a single, coupled entity in which interacting processes link all of its major components. Linking processes of primary significance include

1. The human drivers of energy consumption and land-use change, through increases in both population and per capita consumption
2. The role of human energy systems as sources of CO₂ and other greenhouse gases (GHGs)
3. Land-use change (deforestation, increases in agricultural and urban land use) and its consequences for both GHG emissions and resource (water, land, ecosystem) condition
4. Climate forcing by CO₂ and other GHGs, following from drivers 1, 2 and 3
5. The changing roles of the ocean and the terrestrial biosphere as sinks and sources of CO₂ and other GHGs, driven by the disequilibrium of the earth system through human activities
6. Impacts of climate change through declines in resource condition and human well-being
7. Attempts by human societies to reduce their impact on the global environment, for example, through reductions in GHG emissions to avoid ‘dangerous climate change’ (Schellnhuber et al. 2006)

Through the first six of these processes humankind is unintentionally influencing the earth system, while the seventh is an effort to manage global-scale human impacts on the earth system by mitigating their causes.

An integrated global carbon observation system (Ciais et al. 2004) is a contribution to monitoring the first six of the above processes, and bringing about the seventh. These underlying motivations lead to two broad goals for global carbon observations, respectively oriented towards understanding and management. The former goal is to provide increased understanding of the cycles of carbon and
related entities (water, energy, nutrients) in the earth system, contributing to our ability to diagnose trends and to predict future evolution of the carbon–climate system over timescales of decades to centuries. The latter is to provide the global-scale observations of carbon fluxes and GHG emissions needed to manage the carbon cycle, through emissions reduction programmes based on incentive, regulatory or trading mechanisms. Between them, these two goals largely determine the necessary broad attributes of a global carbon observing system. A recent analysis (Raupach et al. 2005) identified seven main attributes for terrestrial carbon observation, which (with slight extension) provide a broad specification of attributes for a complete global carbon observing system. These seven are (1) scientific rigour; (2) global scope and consistency; (3) spatial resolution sufficient to resolve and monitor all important processes, especially carbon fluxes associated with human land use and energy systems; (4) temporal resolution sufficient to monitor variability in fluxes from weather to climate timescales; (5) integrated monitoring of all relevant entities \([\text{CO}_2, \text{CH}_4, \text{CO}, \text{volatile organic compounds (VOCs)}, \text{black carbon}, \text{together with fluxes of water, nutrients and other entities relevant in modulating carbon fluxes}]\); (6) process discrimination (for instance, between anthropogenic and non-anthropogenic fluxes, and between contributions to net fluxes such as assimilation, autotrophic and heterotrophic respiration); and (7) quantification of uncertainty.

Here, we discuss the implications of carbon–climate vulnerabilities for the attributes of an integrated carbon observation system. By ‘carbon–climate vulnerability’ we mean a positive, disturbance-amplifying feedback between an aspect of the carbon cycle (a pool or flux) and physical climate, including atmosphere, oceans and the hydrological cycle. In particular, carbon–climate vulnerabilities are processes causing global warming through the enhanced greenhouse effect to be larger than it otherwise would be in their absence.

Two ways have been used recently to quantify carbon–climate vulnerability in the above sense. The first is a risk-assessment methodology (Gruber et al. 2004, henceforth G2004) involving heuristic, judgement-based estimates of the releases of carbon to the atmosphere from several terrestrial and oceanic pools under projected changes (to 2100) in temperature, ocean circulation and other physical climate properties. G2004 expressed the results of the assessment as ellipses on a plane with axes defined by the mass of carbon released and a qualitatively judged probability of release (with small releases having high probability and vice versa). This approach is a valuable beginning, but cannot properly quantify carbon–climate feedbacks by estimating the extent to which a carbon release is modified by the extra climate change induced by the release itself.

The second, much more quantitative approach is through the use of fully coupled carbon–climate models. Eleven such models were compared in the recent Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) (Friedlingstein et al. 2006). The models included full physical climate, ocean carbon biogeochemistry responsive to temperature and atmospheric CO\(_2\), and terrestrial carbon dynamics responsive to light, water, temperature and CO\(_2\). All models were run from 1850 to 2100 under a prescribed emissions scenario (the IPCC SRES\(^1\) A2 scenario; see later

\(^1\)IPCC, Intergovernmental Panel on Climate Change; SRES, Special Report on Emissions Scenarios.
The results showed that coupling of the carbon cycle to climate through temperature-dependent processes led to increased atmospheric CO$_2$ in 2100 of 20–200 ppm (augmenting a CO$_2$ concentration of around 700 ppm, depending on the model) and an increase in predicted global temperature of 0.2–2 °C (augmenting an enhanced-greenhouse-induced warming of around 4 °C, likewise depending on the model). There were substantial differences among the ten models, stemming both from carbon cycle parameterisations (for instance, the temperature response of terrestrial heterotrophic respiration) and from the behaviour of modelled physical climate (for instance, the tendency of some of the models to dry out the Amazon as the model climate warms). As a means of studying carbon–climate vulnerabilities, fully coupled carbon–climate models are comprehensive, but they are laborious and difficult to parameterise because of model complexity. The extensive C4MIP runs to date have focused on only a few of the potentially important feedback processes.

In this chapter, we analyse carbon–climate vulnerability and its implications for carbon cycle observations. The plan of the chapter (following this brief introductory section) is that Sect. 2.2 surveys the major feedbacks in the carbon–climate–human system at a general level, including forcing by and feedbacks on human actions. Section 2.3 focuses on carbon–climate feedbacks involving terrestrial processes, drawing from C4MIP results and other sources. Attention is given to both CO$_2$ and CH$_4$. Section 2.4 proposes a perturbation-based approach using simple models for analysing carbon–climate vulnerabilities and illustrates the approach with a semi-quantitative evaluation of the response of permafrost carbon pools to global change. Finally, Sect. 2.5 discusses the implications of carbon vulnerability for integrated carbon observation.

2.2 Feedbacks and Vulnerabilities in the Carbon–Climate–Human System

The trajectories of climate and the carbon cycle are coupled by atmospheric composition. Of the linking groups of processes mentioned in Introduction, four are of central importance for feedbacks and vulnerabilities in the contemporary carbon–climate–human system. The first is enhanced radiative forcing by GHGs, CO$_2$ and CH$_4$ being the largest contributors. The other three correspond to the three major groups of fluxes in the atmospheric CO$_2$ and CH$_4$ budgets: emissions from human activities, ocean–atmosphere exchanges and land–atmosphere exchanges. Section 2.2.1 focuses on land–atmosphere exchanges in more detail, but before doing so, we examine all four groups of processes in general terms.

2.2.1 Radiative Forcing

The carbon cycle accounts for some, but not all, of the processes involved in the radiative forcing of climate. Total radiative forcing can be considered as the sum of
three contributions: (1) from CO₂, (2) from non-CO₂ GHGs (mainly CH₄, halocarbons, N₂O, ozone) and (3) from non-gaseous mechanisms (mainly aerosols, albedo changes, solar variations). The first two are relatively well known (IPCC 2007): the current (2001–2005) radiative forcing from CO₂ is +1.66 ± 0.17 W m⁻², and the forcing from non-CO₂ GHGs is about +1.3 W m⁻² (+0.48 from CH₄, +0.34 from halocarbons, +0.16 from N₂O and +0.30 from ozone). The third contribution, from aerosols, albedo changes and solar variations, is highly uncertain but is considered to be negative, current estimates being around −1.3 ± 1 W m⁻² (IPCC 2007). The current net radiative forcing (+1.6 W m⁻², range +0.6 to +2.4) drives global warming (at about 0.016 °C y⁻¹ over the period 1980–2005). Thus, current net radiative forcing is approximately equal to the radiative forcing from CO₂ alone, with other contributions approximately cancelling. This does not imply that future forcing will behave this way, because all three contributions to radiative forcing are dependent on emissions scenarios and also on future climate through climate feedbacks, so the three contributions will evolve differently under these influences. In summary, a carbon budget and a radiative forcing budget are different entities, but they share a large common term associated with rising atmospheric CO₂.

2.2.2 Emissions from Human Activities

The global balance of atmospheric CO₂, shown in Fig. 2.1, demonstrates that human activities are the overwhelmingly dominant contribution to the current disequilibrium of the global carbon cycle. Fossil-fuel emissions were about 7.2 ± 0.3 Pg C y⁻¹ for the period 2000–2005, and increased at over 3% y⁻¹ for 2000–2005 compared with 1% y⁻¹ for 1990–1999 (Canadell et al. 2007a; Raupach et al. 2007). Emissions from land clearing have changed more slowly, averaging about 1.5 ± 0.5 Pg C y⁻¹ (Canadell et al. 2007a).

The atmospheric CH₄ balance involves ten major source terms and three sink terms, and is discussed in more detail later. Of the current total source, about 2/3 is anthropogenic.

The four main groups of IPCC SRES scenarios (Nakicenovic et al. 2000) all involve major increases in CO₂ emissions over the period to 2100 (Table 2.1), ranging from 12 to 17Pg C y⁻¹ in 2050 and from 7 to 30Pg C y⁻¹ in 2100. Methane emissions are also projected to increase in most scenarios. From the present standpoint of vulnerability analysis, the important question is: are these emissions scenarios significantly dependent on climate itself, so that different emissions scenarios would result from different climate change scenarios? While climate is just one among the many economic, social and environmental factors influencing the scenarios, there are potential mechanisms for feedbacks on emissions scenarios from climate change. Examples include increased energy use to buffer against adverse effects of climate change (e.g. air conditioning), increased energy use to augment resources threatened by climate change (e.g. desalination to supplement water supplies) and increased military energy use brought on by climate-induced geopolitical instability.

Fig. 2.1 The global carbon budget for the period 1950–2005, showing terms in the CO₂ mass balance: \[\text{[atmospheric CO₂ accumulation]} = \text{[emission flux from fossil fuels]} + \text{[other industrial emissions]} + \text{[emissions from land-use change]} - \text{[flux to terrestrial sink]} - \text{[flux to ocean sink]} \]. Data sources as in Canadell et al. (2007a), with atmospheric CO₂ change from ice core data (Law Dome, Antarctica; Etheridge et al. 1998b) before 1959 and direct measurements (Keeling and Whorf 2005) after 1959. Net terrestrial uptake is inferred by difference (total emissions less ocean uptake).

Table 2.1 Indicative fossil-fuel emissions of CO₂ under four major IPCC SRES emissions scenarios (Nakicenovic et al. 2000)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Global-local orientation</th>
<th>Economic-environmental orientation</th>
<th>Fossil-fuel emission (Pg C y⁻¹) in 2050</th>
<th>Fossil-fuel emission (Pg C y⁻¹) in 2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B</td>
<td>Global</td>
<td>Economic</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>A2</td>
<td>Regional</td>
<td>Economic</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>B1</td>
<td>Global</td>
<td>Environmental</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>B2</td>
<td>Regional</td>
<td>Environmental</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

There are three variants of the A1 (globalised, economically oriented) scenario: A1B (balanced), A1T (technologically innovative) and A1FI (fossil-fuel intensive), leading to very different emissions trajectories. Only the A1B scenario is used here.

2.2.3 Ocean–Atmosphere Exchanges

The ocean is a major CO₂ sink, currently absorbing about 25% of fossil-fuel emissions (Fig. 2.1). This will continue over the next century according to C4MIP carbon–
climate models (Friedlingstein et al. 2006). There are several timescales for ocean–atmosphere exchanges related to different ocean carbon pools, but even the shortest is long enough for ocean uptake of CO₂ to be fairly smooth from year to year (Fig. 2.1). Several reviews (Jacobson et al. 2000; Steffen et al. 2004; Le Quere and Metzl 2004; Greenblatt and Sarmiento 2004) describe the processes involved, which include (1) air–sea exchange of CO₂, driven by the difference in CO₂ partial pressure (\(p_{CO_2}\)) between atmosphere and ocean surface waters; (2) buffering between dissolved CO₂ and DIC (total inorganic carbon including CO₂, H₂CO₃, HCO₃⁻ and CO₃²⁻), which means that only about 10% of the carbon crossing the air–sea interface contributes to aqueous \(p_{CO_2}\), with the rest appearing as other forms of DIC; (3) the ocean circulation pump, by which ocean circulations export carbon from surface to deep ocean waters and (4) biological pumps, by which soft-tissue and carbonate detritus from ocean biota in the surface layer export carbon to deep waters as they sink.

All of these processes are subject to climate feedbacks. G2004, in their risk-assessment-based analysis of carbon cycle vulnerabilities, identified six feedbacks. First, chemistry leads to a positive feedback because ocean pH falls as CO₂ is taken up, thereby altering the CO₂/DIC partition and reducing uptake. Second, temperature increases lead to a similar positive feedback through the CO₂/DIC partition. Third, changes in deep ocean circulation (mainly through increasing vertical stratification) increase ocean equilibration times, inducing a positive feedback through reduced uptake over timescales of 10–100 years since the mixing timescale becomes longer. Fourth, ocean circulation changes alter the equilibrium carbon distribution itself (in addition to changing the equilibration timescale), which when coupled with the biological pump leads to a negative feedback because upward transport of DIC from deep to surface waters is reduced but the downward biological pump is not. Fifth, the biological pump is subject to large influence by climate change, but uncertainties are so high that it is not yet possible to identify whether these influences add up to an overall positive or a negative feedback. Sixth, there is the possibility of release from the vast stores of methane hydrates in sediments under continental shelves (and in permafrost). Such a release would constitute a massive positive (heating) feedback on the climate system, but is rated by G2004 as a high-risk, low-probability scenario.

2.2.4 Land–Atmosphere Exchanges

Like the oceans, the terrestrial biosphere currently takes up about 25% of fossil-fuel emissions of CO₂, but unlike the ocean sink, the terrestrial CO₂ sink varies enormously from year to year (Fig. 2.1). Similarly, on longer (100 year) timescales, C4MIP results suggest higher variability for the terrestrial than the ocean CO₂ sink, both in time and between individual models in C4MIP. Land–atmosphere exchanges are also critical in the CH₄ budget. These issues are explored in more detail in Sect. 2.3.
2.3 Vulnerabilities in Terrestrial Carbon Pools and Fluxes

The terrestrial carbon balance equates the net change in terrestrial-biospheric carbon to the sum of carbon fluxes into the terrestrial carbon pool. These fluxes include land–air gaseous exchanges, waterborne and airborne particulate transport, and product removal by humans. The focus here is on the first, which is the most significant for the global carbon budget (though the others can be important particularly for regional carbon budgets). Gaseous carbon exchange between terrestrial systems and the atmosphere occurs through fluxes of CO₂ and several other species including CH₄, VOCs and CO. The CO₂ exchange dominates the mass flux, but exchanges of other species have significant effects on radiative forcing. Here, we summarise the main processes leading to vulnerabilities in land–air exchanges of carbon as CO₂ and CH₄, since these two entities are the most important from both mass-flux and radiative forcing standpoints.

2.3.1 Vulnerabilities Associated with CO₂ Exchanges

Table 2.2 summarises the main processes affecting the net land-atmosphere flux of CO₂ in terrestrial systems. The table identifies three classes of driver for changes in

<table>
<thead>
<tr>
<th>Process</th>
<th>Driver</th>
<th>Sign of land-to-air flux (±) = (source, sink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1 CO₂ fertilisation</td>
<td>a</td>
<td>−</td>
</tr>
<tr>
<td>a2 Nutrient constraints on CO₂ fertilisation</td>
<td>a</td>
<td>+</td>
</tr>
<tr>
<td>a3 Fertilisation by nitrogen deposition</td>
<td>a</td>
<td>−</td>
</tr>
<tr>
<td>a4 Effects of pollution (e.g. acid rain, ozone, etc.)</td>
<td>a</td>
<td>+</td>
</tr>
<tr>
<td>b1 Response of respiration to warming and moisture</td>
<td>b</td>
<td>+ (warming), ± (moisture)</td>
</tr>
<tr>
<td>b2 Response of NPP to warming and moisture</td>
<td>b</td>
<td>− (warming), ± (moisture)</td>
</tr>
<tr>
<td>b3 Radiation effects (e.g. direct/diffuse partition)</td>
<td>b</td>
<td>−</td>
</tr>
<tr>
<td>b4 Biome shifts</td>
<td>b</td>
<td>±</td>
</tr>
<tr>
<td>b5 Permafrost thawing</td>
<td>b</td>
<td>+</td>
</tr>
<tr>
<td>b6 Changes in wildfire regime</td>
<td>b</td>
<td>+ (rapid), − (slow)</td>
</tr>
<tr>
<td>b7 Changes in herbivore (e.g. insect) ecology</td>
<td>b, c</td>
<td>+</td>
</tr>
<tr>
<td>c1 Changes in managed fire regime</td>
<td>c</td>
<td>+ (rapid), − (slow)</td>
</tr>
<tr>
<td>c2 Managed reforestation and afforestation</td>
<td>c</td>
<td>−</td>
</tr>
<tr>
<td>c3 Unmanaged forest regrowth (after cropland abandonment)</td>
<td>c</td>
<td>−</td>
</tr>
<tr>
<td>c4 Woody encroachment/woody thickening</td>
<td>c</td>
<td>−</td>
</tr>
<tr>
<td>c5 Deforestation and land clearing (e.g. forest to savannah)</td>
<td>c</td>
<td>+</td>
</tr>
<tr>
<td>c6 Peatland and wetland drainage</td>
<td>c</td>
<td>+</td>
</tr>
<tr>
<td>c7 Agricultural practices</td>
<td>c</td>
<td>±</td>
</tr>
</tbody>
</table>

Drivers are (a, shaded grey) changes in atmospheric composition and chemistry; (b, unshaded) physical climate changes; (c, shaded grey) changes in land use and land management. The sign of the land-to-air CO₂ flux is the same as the sign of the climate warming feedback (a positive land-to-air flux increases the CO₂ radiative forcing)

NPP net primary production

these processes: \(a\) changes in atmospheric composition (CO\(_2\) fertilisation, nutrient effects, pollution effects); \(b\) changes in physical climate (temperature, precipitation, light) and \(c\) changes in land use and land management. Table 2.2 also identifies whether the process is a source or a sink, an attribute that has no simple correlation with the class of driver. All processes driven by changes in atmospheric composition \(a\) and physical climate \(b\) are directly involved in carbon–climate feedbacks. An additional dimension to terrestrial carbon vulnerability arises through processes driven by changes in land use and land management \(c\), which provide direct couplings between the terrestrial carbon cycle and human actions in the carbon–climate–human system.

Most of the processes listed in Table 2.1 are vulnerable to major changes over the next century, and many have already changed significantly over the last century. The most important feedbacks and vulnerabilities associated with these processes can be summarised as follows, drawing from a recent review (Canadell et al. 2007b; henceforth C2007). (Note that not all processes listed in Table 2.2 are discussed in the following.)

2.3.1.1 CO\(_2\) Fertilisation and Its Limitation by Water and Nutrient Constraints \(a1, a2\)

It is expected on physiological grounds that plants respond to rising atmospheric CO\(_2\) with increased assimilation, leading to increased biomass. The response saturates at around 1,000 ppm according to models and laboratory experiments (Farquhar et al. 1980; Farquhar and Sharkey 1982). This CO\(_2\) fertilisation process is now incorporated in most terrestrial–biosphere and dynamic-vegetation models (Cramer et al. 2001). However, field results from free air CO\(_2\) enrichment (FACE) and other elevated CO\(_2\) studies have been variable (Oren et al. 2001; Nowak et al. 2004; Norby et al. 2005). Some actively growing vegetation types (such as temperate, well-watered young forests) show responses in net primary production (NPP) of up to 25\% (Norby et al. 2005), while other, more stressed vegetation types show much lower responses (Nowak et al. 2004). Field observations also indicate a saturation of response to CO\(_2\) fertilisation at 500–600 ppm, much lower than expected on physiological grounds. These results indicate that the full possible physiological response to CO\(_2\) fertilisation is not manifested in most field environments because of constraints from factors other than CO\(_2\), especially nitrogen limitations (Luo et al. 2004). There is also an interaction between water limitation and CO\(_2\) fertilisation through the beneficial (to terrestrial carbon storage) effect of increasing CO\(_2\) on water-use efficiency because of decreased stomatal conductance. This is most pronounced in dry ecosystems (Field et al. 1996; Owensby et al. 1997; Pataki et al. 2000).

2.3.1.2 Fertilisation by Nitrogen Deposition \(a3\)

Early studies (Townsend et al. 1996; Holland et al. 1997) suggested significant enhancement of the terrestrial CO\(_2\) sink by N deposition, especially in mid-latitude ecosystems.
Northern Hemisphere forests where N limitation is common and deposition rates are high. Later work (Nadelhoffer et al. 1999) has suggested a lower contribution of about 0.25 Pg C y\(^{-1}\) to the current net terrestrial sink of 2–3 Pg C y\(^{-1}\). C2007 concluded that it is unlikely that N deposition will create major new carbon sinks over the next century.

2.3.1.3 Response of Respiration to Warming and Moisture \((b1)\)

Warming increases heterotrophic respiration of soil carbon \((R)\), thus decreasing Net Ecosystem Exchange \((\text{NEE} = \text{NPP} - R)\). Soil moisture is comparably important. Most models incorporate a strong temperature response of soil respiration, quantified by \(Q_{10} = \frac{R(T + 10^\circ K)}{R(T)}\), which is a dominant contributor to the source side of the terrestrial carbon balance and is a major reason for predictions that the current terrestrial sink will saturate or reverse in the future. Most of the 11 C\(^4\)MIP models used \(Q_{10} = 2\) (Friedlingstein et al. 2006). However, as usual, experimental evidence is less clear-cut than modelling assumptions. The review of C2007 is summarised here in three stages: first, many laboratory and some field studies support high \(Q_{10}\) values of 2 or more for soil respiration, and show that \(Q_{10}\) decreases with increasing temperature (Lloyd and Taylor 1994). Second, other field studies (Giardina and Ryan 2000; Valentini et al. 2000; Jarvis and Linder 2000; Luo et al. 2001) have suggested that \(Q_{10}\) declines after some time as labile soil carbon is respired, leaving more recalcitrant soil carbon for which turnover is slower and less sensitive to temperature. Third, recent studies (Knorr et al. 2005; Fang et al. 2005) have resolved the apparent paradox by analysing the data in terms of separate fast and slow carbon pools (in contrast with earlier studies which analysed all soil carbon in one pool). These newer studies find different temperature dependences in \(R\) for fast and slow soil carbon pools, with faster pools having more temperature sensitivity.

2.3.1.4 Response of NPP to Warming and Moisture \((b2)\)

Global terrestrial NPP has increased by 6\% (3.4 Pg C y\(^{-1}\)) over the two decades from 1981 to 2000, largely because of extension of the growing season in high–northern-latitude ecosystems because of global warming (Nemani et al. 2003). This is associated with an increase in the terrestrial CO\(_2\) sink (excluding land-use change) from around 0.3 Pg C y\(^{-1}\) in the 1980s to 2–3 Pg C y\(^{-1}\) in the 1990s (IPCC 2001; Sabine et al. 2004). Most (though not all) C\(^4\)MIP simulations predict a further increase in the terrestrial CO\(_2\) sink through the twenty-first century, driven largely by CO\(_2\) fertilisation (Friedlingstein et al. 2006). This would provide a negative feedback on further climate change. However, new observations of a reduced CO\(_2\) sink due to increased climate variability are challenging the hypothesis of an increasing terrestrial CO\(_2\) sink in the twenty-first century. An analysis of Northern Hemisphere terrestrial carbon fluxes (Angert et al. 2005) shows that since 1994,
accelerated carbon uptake in early spring was cancelled by decreased uptake during summer, most likely due to hotter and drier summers in middle and high latitudes. The heatwave in 2003 alone reduced the gross primary productivity of European ecosystems by 30%, resulting in a net atmospheric CO$_2$ source of 0.5 Pg C y$^{-1}$ or 4 years of carbon accumulation in these systems (Ciais et al. 2005).

2.3.1.5 Permafrost Thawing (b5)

The carbon store in frozen soils in the Northern Hemisphere has been estimated as over 400 Pg C, of which around 54% is in Eurasia, largely in Russia, and 46% in North America, largely in Canada (Tarnocai 1999). A recent estimate is substantially higher at around 900 Pg C (Zimov et al. 2006). Widespread observations already exist of permafrost thawing leading to the development of thermokarst and lake expansion, followed by lake drainage as permafrost further degrades (Camill 2005; Smith et al. 2005; Jorgenson et al. 2006). Preliminary estimates suggest that permafrost area could shrink by up to 25% with a mean global warming of 2 °C (Anisimov et al. 1999). Melting permafrost will increase both CO$_2$ and CH$_4$ emissions from frozen soils. It is estimated for the Canadian permafrost alone that up to 48 Pg C could be vulnerable to release under a 4 °C warming scenario (Tarnocai 1999). G2004 suggested that up to 5 Pg C could be released from melting permafrost over the next 20 years and up to 100 Pg C in the next 100 years, assuming a warming of 2 °C by 2100 and that this warming releases 25% of the carbon locked in frozen soils (following projected area reductions).

2.3.1.6 Fire (b6, c1)

The annual carbon flux to the atmosphere from savannah and forest fires (excluding biomass burning for fuel and land clearing) is estimated to be in the range of 1.7–4.1 Pg C y$^{-1}$ (Mack et al. 1996), mostly as CO$_2$. A recent estimate (van der Werf et al. 2006) gives a fire emission of 2.5 Pg C y$^{-1}$ 1997–2004. In high-intensity fire years such as during El Niño-Southern Oscillation (ENSO) events, emission from fires can be responsible for as much as 66% of the atmospheric CO$_2$ growth anomaly (van der Werf et al. 2003). In the long term or over large spatial regions, terrestrial carbon losses from fires may be compensated by the gains during vegetation regrowth. However, a terrestrial carbon imbalance is created during the transition from one disturbance regime to another: this leads to a CO$_2$ sink (or source) when the disturbance frequency is reduced (or increased). Furthermore, trends in fire disturbance frequency are not spatially uniform. For instance, fire exclusion during the twentieth century in many countries has resulted in an increase of biomass in forests and woodlands (Luger and Moll 1993; Houghton et al. 2000; Mouillot and Field 2005), and the potential exists for further accumulation especially in temperate and subtropical regions. By contrast, increases in annual burned area over the last two decades in boreal North America and some parts of Europe are shifting a
long-term trend of terrestrial carbon accumulation into one of release to the atmosphere (Kurz and Apps 1999).

2.3.1.7 Managed and Unmanaged Forest Growth \((c2, c3, c4) \)

Directly and indirectly human-induced forest regrowth (through cropland abandonment, vegetation thickening, afforestation and reforestation) accounts for a major contribution to the terrestrial carbon sink of 2–3 Pg C y\(^{-1}\) through the 1990s. Several processes are involved, all related to land use and land management. First, forest regrowth on abandoned agricultural land has been identified as one of the most significant mechanisms to explain the net CO\(_2\) sink in the Northern Hemisphere, both in the USA (Houghton and Hackler 2000) and in Europe (Janssens et al. 2005). Crop abandonment results in the expansion of relatively young forests with fast growth rates, and therefore with high CO\(_2\) sink capacity. Second, woody thickening and encroachment in semi-arid regions and savannahs, largely due to fire suppression policies and pasture management, accounts for 22–40\% of the US terrestrial carbon sink (Pacala et al. 2001) and is a significant component of the sink in Australia (Gifford and Howden 2001; Burrows et al. 2002). However, these estimates have very large uncertainties. Third, managed afforestation and reforestation has a significant potential as a terrestrial CO\(_2\) sink over the twenty-first century, though currently only China has seen a substantial increased terrestrial carbon storage (0.45 Pg C) by this mechanism, through large reforestation efforts over recent decades (Fang et al. 2001).

2.3.1.8 Deforestation and Land Clearing \((c5) \)

Deforestation and land clearing, mainly to establish croplands, has released a total of 182–199 Pg C to the atmosphere over the period from 1800 to 2000 (DeFries et al. 1999) and is responsible for 33\% of the increase in atmospheric CO\(_2\) concentration observed over that period (Houghton 1998). Estimates of emissions from deforestation for the decades of the 1980s and 1990s range from 0.8 to 2.2 Pg C y\(^{-1}\) (DeFries et al. 2002; Houghton 2003; Achard et al. 2004) and are expected to continue being significant over the next decades to century.

2.3.1.9 Peatland and Wetland Drainage \((c6) \)

Peatlands and wetlands in high, temperate and tropical latitudes contain a carbon store of over 450 Pg C, as soil organic matter. This carbon is largely isolated from decomposition by waterlogged environments and/or low temperatures, but is vulnerable to release to the atmosphere when water tables fall (through land-use change or precipitation change) or temperatures rise. When such carbon releases occur, a complex balance exists between CO\(_2\) emissions (in oxidising conditions
associated with falling water tables) and CH$_4$ emissions (in anoxic conditions associated with high water tables). A Siberian wetland illustrates this complexity (Friborg et al. 2003): despite being a net carbon sink, the wetland was a source of positive radiative forcing because of its emissions of CH$_4$ (which has a warming potential 21 times larger than that of CO$_2$ over 100 years). The case of tropical peatlands is particularly important because of high vulnerabilities driven by both land use and climate factors. The carbon store in tropical peatlands is about 70 Pg C, with deposits as deep as 20 m (Page et al. 2002) much of it in the south-east Asian archipelago (Indonesia, Malaysia, Papua New Guinea, Thailand, Philippines). These peatlands have been a net CO$_2$ sink since the late Pleistocene (Page et al. 2004). However, over the last decade, a combination of intense draining for agriculture and increasing climate variability (in the form of more intense El Niño-drought events) has resulted in a significant CO$_2$ source with discernible effects on atmospheric CO$_2$ growth. During El Niño 1997–1998 events in Indonesia, burning of peat and vegetation resulted in an estimated loss of carbon between 0.81 and 2.57 Pg C in 1997, equivalent to 13–40% of the mean annual global carbon emissions from fossil fuels (Page et al. 2002) and a 60% contribution to the atmospheric CO$_2$ growth anomaly due to fire activity (van der Werf et al. 2004).

2.3.2 Vulnerabilities Associated with CH$_4$ Exchanges

The atmospheric methane concentration is currently about 1,750 ppb (mole fraction), having risen from around 600 ppb in the pre-industrial era (Fig. 2.2). The growth rate of atmospheric CH$_4$ has declined over recent years to the point where it is now nearly zero (Allan et al. 2005; Bousquet et al. 2006). The CH$_4$ growth rate is controlled by an atmospheric methane budget which includes a number of different sources and sink terms, and can be written for the present purpose as:

$$\frac{d[CH_4]}{dt} = \frac{F_{\text{Wetlands}} + F_{\text{Termites}} + F_{\text{Oceans}} + F_{\text{Geom}}}{F_{\text{Fuel}} + F_{\text{Landfills}} + F_{\text{Ruminants}} + F_{\text{Rice}} + F_{\text{Fire}} + F_{\text{Other}}} - \frac{F_{\text{Trop OH}} + F_{\text{Sink}} + F_{\text{Ait}}}{Sinks} \approx k_{CH_4}[CH_4]$$

(2.1)

where r_{CH_4} is the mass of atmospheric methane per unit concentration and k_{CH_4} is an overall decay rate. The sources can be categorised as non-anthropogenic and anthropogenic (respectively grouped on the first and second lines of the ‘source’ collection of fluxes above). Non-anthropogenic sources arise from wetlands, termites, ocean sources (including methane hydrates) and geological processes (geothermal and volcanic). Anthropogenic CH$_4$ sources, which are amenable to mitigation, result from burning and leakage of fossil fuels (natural gas, petroleum, coal), landfills, ruminant livestock, rice paddies and biomass burning associated with land clearing. The largest sink is from tropospheric OH oxidation, with smaller sinks.
arising from soils, oceanic and stratospheric oxidation. The sinks can be parameterised as a first-order decay with a turnover time \((1/k_{CH_4})\) of about 10 years. Provided \(k_{CH_4}\) is steady, this implies that

\[
[CH_4](t) = \int_0^\infty F_{Sources}(t-s) \exp(-k_{CH_4}s) \, ds
\]

(2.2)

so the \(CH_4\) concentration is a lagged moving time average of the sources with an exponential weighting factor in time.

Figure 2.3 shows estimates from several studies of the \(CH_4\) source and sink terms in Eq. (2.1). Approximately 2/3 of global emissions are currently from anthropogenic sources. Estimates of the sources are quite scattered, with each of the
major anthropogenic sources (fossil fuels, landfills, ruminants, rice, biomass burning) contributing significantly (in the order of 50–100 Tg CH₄ y⁻¹) to the total current source of about 500 Tg CH₄ y⁻¹. The recent reduction in the growth rate of atmospheric CH₂ to near zero (Fig. 2.2) results from decreased fossil-fuel-related anthropogenic emissions through the 1990s, and decreased emissions since 1999 from drying wetlands in temperate and tropical Asia and tropical South America, combined with a return to rising anthropogenic emissions (Bousquet et al. 2006).

Despite the recent slow down in CH$_4$ growth rate, most SRES scenarios predict that atmospheric CH$_4$ emissions will increase by a factor of typically 1.5–2 in the century to 2100 (with much scatter among scenarios). These predicted increased emissions result from all the anthropogenic sources listed above. In addition, future methane vulnerabilities can arise from mechanisms which cause either non-anthropogenic or anthropogenic CH$_4$ sources to increase in response to climate change. Increased temperatures and atmospheric CO$_2$ will increase CH$_4$ production from wetlands and rice paddies as more substrate is made available. More importantly, however, is the control that the water table exercises on CH$_4$ wetland sources. Overall increase in precipitation in a warmer climate will enhance this source by raising water tables, but regional drying trends will result in decreased CH$_4$ production and a simultaneous increase in CO$_2$ emissions (Christiansen et al. 2003; Cao et al. 1998). This issue is similar to that for peatland and wetland drainage, discussed above for CO$_2$ emissions.

2.4 Semi-Quantitative Evaluation of Carbon–Climate Vulnerabilities

Evaluation of future carbon–climate vulnerabilities is not easy. The first requirement is a quantitative definition, here constructed as follows: we imagine a model of the carbon–climate system which includes a coupling or feedback process P between carbon and climate (such as any of the processes in Table 2.2). Starting from a given initial state of the system, the model can be integrated forward in time to produce estimates of the state $x(t)$ of the system at any future time t. This integration can be carried out for an ‘uncoupled’ version of the model in which the process P is omitted from the model equations, and for a ‘coupled’ version in which P is included. For a variable y in the carbon–climate system such as atmospheric CO$_2$ or temperature [or in general any function of the state vector $x(t)$], the vulnerability of y to P at time t can be defined as

$$\delta y(t) = y_C(t) - y_U(t)$$

(2.3)

where $y_C(t)$ and $y_U(t)$ are respectively the values of $y(t)$ from the coupled and uncoupled versions of the model. Under this quantitative definition, the vulnerability is specific to a variable y (such as a carbon pool), a process P and a time t. It is a model-based, ‘what-if’ measure of the significance of process P. [This definition is not the same as the sensitivities used in C4MIP analyses, which are linearised relationships between $\delta y_1(t)$ and $\delta y_2(t)$ for different model variables y_1 and y_2, for example, the sensitivity of terrestrial or ocean carbon uptake to CO$_2$ or temperature.]

In Introduction to this chapter, we have already reviewed the two main ways that have been used recently to explore carbon–climate vulnerability: the judgement-based, risk-assessment approach of G2004, and fully coupled carbon–climate models as in the C4MIP experiments (Friedlingstein et al. 2006). These approaches have
complementary strengths: the risk-assessment approach is subjective, exploratory and largely non-quantitative. The fully coupled model approach is quantitative and rigorous (within the parameterisation choices in particular models) but is subject to the usual difficulties of complex, numerically intensive models: (1) model parameterisations (functional relationships between fluxes and model state variables) are scale dependent (Raupach et al. 2005) and hence not unique, so that their choice involves an element of subjective judgement; (2) the settings of parameter values (numbers in the functional relationships) are usually underdetermined by available information; (3) complex models are usually numerically intensive and expensive to integrate over long times (particularly in ensemble mode to assess the properties of model solutions which are chaotic attractors), which places a practical restriction on the range of processes \(P\) which can be assessed.

For these reasons, it is appropriate to explore an intermediate pathway for assessing carbon–climate vulnerability, based on very simple but still quantitative models which preserve the essential carbon–climate feedbacks leading to possible vulnerabilities. Criteria for a simple model to be used in this way are that the model broadly reproduces (1) observed features of past changes in the carbon–climate system over the last 200 years; (2) the future predictions of more complex models, such as carbon–climate trajectories under the four main classes of IPCC scenario (Table 2.1); (3) the model must include defensible (though necessarily simple) parameterisations of processes \(P\) to be assessed for vulnerability which are not currently included in more complex models. The basic assumption is that although a simple model cannot provide a stand-alone prediction of the trajectory of the carbon–climate system at the same level of sophistication as a fully coupled carbon–climate model, it can provide information about the perturbation resulting from the presence or absence of a process \(P\).

To illustrate this approach we have estimated the vulnerability of the carbon–climate system to one significant feedback, the carbon release from permafrost soils under the influence of warming (Zimov et al. 2006). Here, we assess the vulnerability due to CO\(_2\) only (recognising that this is an underestimate of the true vulnerability because of the additional effect of CH\(_4\)) by using a simple, globally averaged ‘box’ carbon–climate model with the following attributes:

1. The model state vector includes six variables: mean global temperature \(T_A\), atmospheric CO\(_2\) concentration \([\text{CO}_2]_A\), the terrestrial carbon biomass excluding frozen soils \(C_B\), carbon store in permafrost or frozen soils \(C_F\), marine carbon store as dissolved inorganic carbon \(C_M\) and partial pressure of CO\(_2\) in the upper ocean \(p_{\text{CO}_2}\). Model equations and parameters are given in Tables 2.3–2.5.

2. Atmospheric CO\(_2\) is connected to climate \(T_A\) through an overall climate sensitivity to CO\(_2\) which parameterises not only the direct radiative forcing by CO\(_2\) increases but also all other associated climate feedbacks (water vapour, clouds, …). Two alternative formulations are used, in which changes in \(T_A\) are proportional either to changes in \([\text{CO}_2]_A\) itself or to changes in \(\ln [\text{CO}_2]_A\) (Table 2.3). The latter is consistent with classical radiative transfer theory for infrared absorption in
nearly saturated CO$_2$ bands (Arrhenius 1896; Goody 1964), while the former provides some account for positive feedbacks (e.g. from water vapour) which cause greenhouse warming to be greater than that for CO$_2$ alone. Each includes a single sensitivity parameter. Neither expression has a formal justification, but the differences between the two provide a first indication of the sensitivity of the carbon–climate system to assumptions about the CO$_2$–temperature coupling.

3. Frozen-soil carbon (C_F) is assumed to be released as CO$_2$ under the influence of global warming, from a pool initialised at a pre-industrial value $C_{F0} = 900$ Pg C (Zimov et al. 2006). The rate constant for this release (k_F) is zero in pre-industrial conditions ($T_A = T_{A0}$) and increases linearly with climate warming ($T_A - T_{A0}$) with a proportionality coefficient k_{FT}, so that $\frac{dC_F}{dt} = -k_{FT}(T_A - T_{A0})C_F$. To estimate k_{FT} we use the estimate that a warming of 2 °C will lead to shrinking of the permafrost area by around 25% (Anisimov et al. 1999). Assuming that (1) this area decrease translates to a shrinkage of the C_F pool by the same factor and (2) the release occurs over 100 years, the implied value of k_{FT} is 0.25 per century per (2 °C) or 0.00125 °C$^{-1}$ y$^{-1}$. A value of 0.001 °C$^{-1}$ y$^{-1}$ is used here. This is a conservative value, mainly because a warming of 2 °C is likely to occur over a shorter time than 100 years, which would increase the inferred value of k_{FT}.

<table>
<thead>
<tr>
<th>State variable</th>
<th>Governing equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean global temperature (°C)</td>
<td>(1) Linear: $\frac{dT_A}{dt} = \alpha_1 \frac{d[CO_2]_A}{dt}$</td>
</tr>
<tr>
<td></td>
<td>(2) Logarithmic: $\frac{dT_A}{dt} = \frac{\alpha_2}{(\ln 2)[CO_2]_A} \frac{d[CO_2]_A}{dt}$</td>
</tr>
<tr>
<td>Atmospheric CO$_2$ concentration (ppm)</td>
<td>$\frac{d[CO_2]A}{dt} = F{\text{pass}} + F_{\text{LUC}} + F_{\text{MA}} + F_{\text{FA}} - \frac{dC_F}{dt}$</td>
</tr>
<tr>
<td>Terrestrial carbon store in biomass and soils (Pg C) excluding peatlands, frozen soils</td>
<td>$\frac{dC_B}{dt} = F_{\text{NPP}} - F_R - F_{\text{LUC}}$</td>
</tr>
<tr>
<td>Ocean (marine) carbon store (Pg C)</td>
<td>$\frac{dC_M}{dt} = -F_{\text{MA}}$</td>
</tr>
<tr>
<td>Ocean pCO_2 (Pa)</td>
<td>$\frac{dpCO_2}{dt} = \beta \frac{pCO_2}{C_M} \frac{dC_M}{dt}$</td>
</tr>
<tr>
<td>Carbon store in permafrost (frozen soils) (Pg C)</td>
<td>$\frac{dC_F}{dt} = -F_{\text{FA}}$</td>
</tr>
</tbody>
</table>

Table 2.3 Governing equations for state variables in a simple box model of the carbon–climate system. Carbon fluxes (F) are defined in Table 2.4; parameters are defined in Table 2.5.
Table 2.4 Phenomenological equations for fluxes (F) in a simple box model of the carbon–climate system

<table>
<thead>
<tr>
<th>Carbon flux (Pg C y$^{-1}$)</th>
<th>Phenomenological equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{Foss}</td>
<td>1751–2005: data (Marland et al. 2006) future to 2100: scenarios (Table 2.1)</td>
</tr>
<tr>
<td>F_{LUC}</td>
<td>1751–2005: data (Houghton, 1999, C2007) future to 2100: linear decline to zero in 2100</td>
</tr>
</tbody>
</table>
| Terrestrial NPP F_{NPP} | $F_{\text{NPP}} = F_{\text{NPP0}} + (F_{\text{NPP2}} - F_{\text{NPP0}}) f$
| | $(C_A - C_{\text{A0}}; C_{\text{A1}} - C_{\text{A0}})$
| | with $f(x, \alpha) = x^2/(x^2 + \alpha^2)$, $C_A = r_{\text{CO2}}[\text{CO}_2]_A$ |
| Terrestrial respiration F_R | $F_R = k_{\text{R0}}C_A^2(T_A - T_{\text{A0}})^2$ |
| Ocean-air CO$_2$ flux F_{MA} | $F_{\text{MA}} = \frac{(A_{\text{Ocean}}v_{\text{Piston}}(p_{\text{CO2}} \text{atm} - p_{\text{CO2}})_A)}{k_{\text{Henry}}}$ |
| Permafrost-air CO$_2$ flux F_{FA} | $F_{\text{FA}} = k_{\text{FA}}(T_A - T_{\text{A0}})C_F$ |

NPP net primary production

Table 2.5 Parameters in a simple box model of the carbon–climate system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion for atmospheric CO$_2$ (ppm to Pg C)</td>
<td>r_{CO2}</td>
<td>2.181 Pg C ppm$^{-1}$</td>
</tr>
<tr>
<td>Linear climate sensitivity to C_A</td>
<td>α_1</td>
<td>0.008 °C ppm$^{-1}$</td>
</tr>
<tr>
<td>Logarithmic (CO$_2$ doubling) climate sensitivity to CO$_2$</td>
<td>α_2</td>
<td>2 °C</td>
</tr>
<tr>
<td>Revelle buffer factor for response of p_{CO2} to C_M</td>
<td>B</td>
<td>12 (dimensionless)</td>
</tr>
<tr>
<td>Initial (pre-industrial) temperature T_{A0}</td>
<td>15 °C</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) CO2 concentration $[\text{CO2}]{\text{A0}}$</td>
<td>278 ppm</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) terrestrial biomass C store C_{B0}</td>
<td>Calculated (equilibrium)</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) marine C store C_{M0}</td>
<td>5,000 Pg C</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) ocean p_{CO2}</td>
<td>Calculated (equilibrium)</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) C store in frozen soils C_{F0}</td>
<td>500 Pg C</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) NPP F_{NPP0}</td>
<td>60 Pg C y$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Initial (pre-industrial) NPP F_{NPP2}</td>
<td>75 Pg C y$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>CO$_2$ scale for NPP saturation with respect to CO$_2$</td>
<td>$[\text{CO2}]_{\text{A1}}$</td>
<td>450 ppm</td>
</tr>
<tr>
<td>Turnover rate for terrestrial respiration at $T_A = T_{\text{A0}}$</td>
<td>k_{R0}</td>
<td>0.02 y$^{-1}$</td>
</tr>
<tr>
<td>Doubling temperature for F_R</td>
<td>δ_{LT}</td>
<td>15 °C</td>
</tr>
<tr>
<td>Ocean area</td>
<td>A_{Ocean}</td>
<td>3.6×10^{14} m2</td>
</tr>
<tr>
<td>Ocean exchange (piston) velocity</td>
<td>v_{Piston}</td>
<td>1,500 m y$^{-1}$</td>
</tr>
<tr>
<td>Henry’s law constant for CO$_2$</td>
<td>k_{Henry}</td>
<td>2.900×10^{-2} (25 – T_A/25) Pa m3 mol$^{-1}$</td>
</tr>
<tr>
<td>Rate per °C for C flux from frozen soils k_{FF}</td>
<td>0 or 0.001 y$^{-1}$ °C$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

NPP net primary production
4. Parameters (particularly the climate sensitivities to CO_2) and initial conditions were chosen so that predictions approximately matched past (1750–2005) trends T_A and $[CO_2]_A$ (Table 2.5).

Figure 2.4 shows predictions for 1750–2100 under four IPCC SRES scenarios (Table 2.1), with no frozen-carbon feedback ($k_{FT} = 0$). Agreement with past observations of T_A and $[CO_2]_A$ is satisfactory. Predictions with a linear climate sensitivity to CO_2 (upper panels) yield a warming range in 2100 of 2 °C (scenario B1) to 4 °C (scenario A2), compared with 1.5–2.5 °C from the logarithmic climate sensitivity to CO_2. The former, larger warming is very close to the ensemble of climate model results in the IPCC Fourth Assessment Report (IPCC 2007), while the latter is lower. The $[CO_2]_A$ range is 560 ppm (scenario B1) to 820 ppm (scenario A2).

Figure 2.5 compares model predictions with the frozen-carbon pool disabled ($k_{FT} = 0$) and enabled ($k_{FT} = 0.001 °C^{-1} y^{-1}$), using future emissions scenario A2 (the standard scenario for C4MIP). With linear climate sensitivity to CO_2 (which yields a model behaviour broadly consistent with IPCC predictions as noted above), the positive
feedback on warming through CO$_2$ release from frozen soils yields an additional temperature increment in 2100 (δT_A) of about 0.7 °C and a CO$_2$ increment (δ[CO$_2$]$_A$) of about 80 ppm, above the changes induced by other processes. The increments with the logarithmic climate sensitivity to CO$_2$ are lower, because vulnerability of frozen carbon increases with warming.

This simple calculation neglects the additional warming due to CH$_4$ release. From one estimate (Zimov et al. 2006), about 30% of the carbon released to the atmosphere from thawing permafrost is released as CH$_4$, with a present global warming potential (GWP) of about 21 relative to CO$_2$ (though the GWP of CH$_4$ will decline in the future). This methane has a residence time in the atmosphere of the order of 10 years, ultimately being oxidised to CO$_2$. Thus, the GWP of the released carbon decreases with time.

2.5 Implications of Carbon–Climate Vulnerabilities for Carbon Observation

Over several years, the global research and observation communities have been developing a concept for integrated global carbon observation. The carbon theme report of the Integrated Global Observing Strategy (Ciais et al. 2004) calls for integrated observations of fluxes, processes and pools, principally:

• Satellite measurements of atmospheric-column CO$_2$, CH$_4$ and other GHGs, together with in situ (flask and continuous) measurements
• An operational, optimised network of eddy-covariance flux towers, measuring the CO$_2$ flux as NEE, with water and energy fluxes, over all major ecosystems
• A global system for in situ (ship, drifter) ocean pCO$_2$ measurements
• Satellite observations of vegetation and other land surface properties
• Georeferenced fossil-fuel emission maps including temporal variability and uncertainties
• Regular inventories of forest above-ground biomass and soil carbon content
• Regular inventories of dissolved carbon and related biogeochemical quantities in the ocean
• Satellite and in situ observations of fire, land cover change and other disturbance processes
• Monitoring of land-to-ocean carbon fluxes in river run off
• Monitoring of carbon fluxes associated with goods (harvesting, trade, disposal)

Many of these measurements (particularly the atmospheric concentrations and ocean biogeochemistry) are to be integrated with near-real-time modelling frameworks, using data assimilation into climate and earth system models. This may involve collaboration with the atmosphere–ocean models run by operational weather forecasting agencies, together with longer timescale models of pool dynamics in the carbon–climate system.

In Introduction, we highlighted two broad goals for a global carbon observing system, oriented respectively towards understanding and management. Recognition of carbon–climate vulnerabilities gives added focus to both goals, through the need to provide early warning of feedbacks (both positive and negative), to understand the reasons for emerging trends, and to provide national and international policy communities with information to manage vulnerabilities. Considering the carbon–climate vulnerabilities associated with terrestrial processes (Sect. 2.3 and Table 2.2), we now analyse the modes of terrestrial observation which emerge as having particular importance. Some are already well covered by existing plans, others less so. The discussion is organised around (1) fluxes and processes and (2) pools.

2.5.1 Fluxes and Processes

Additional observations are needed to increase our capacity to attribute carbon fluxes to specific source and sink processes, and to detect changes in the statistical properties of vulnerabilities associated with episodic disturbances. The following are key areas:

• **Responses of NPP and respiration to extreme events**: NPP and respiration respond not only to long-term climate shifts but also to extreme events (sometimes through threshold-like transitions), as has already been observed (Sect. 2.3.1). Observational requirements to improve detection and understanding of these effects include:

Satellite measurements of vegetation dynamics over multi-year periods: Longevity of satellite records requires rehabilitation and harmonisation of data from old systems with records extending back to the 1980s (e.g. AVHRR), together with maintenance of modern systems (e.g. MODIS) and launching of well-equipped new systems on the timescales required to maintain continuity through overlap between systems.

Process-based observations: Flux towers and other process observations have a major role in the detection and attribution of the effects of drought and heat stress on production. Consistent long-term observations are critical for this purpose, to enable the extreme-event signal to emerge from the climatological background.

- Multi-factorial of responses of NPP and respiration to temperature, water, nutrients and CO$_2$: Climate-induced changes in the relationship between NPP and soil respiration have major implications for the terrestrial carbon balance, including NEE and pool dynamics. There is a wide scatter in existing process-based information on the responses of NPP, respiration and NEE to interactions among the drivers of temperature, water, nutrients and CO$_2$ (C2007; also see Sect. 2.3.1). It is important to attribute and hence reduce this scatter, which implies a continuing demand for ecosystem eddy flux measurements coupled with chamber-based soil measurements over diverse ecosystems (boreal, tundra, tropical, permafrost, temperate forests, semi-arid regions, etc.), together with ongoing multi-factorial manipulative experiments to disentangle the interactions.

- Deforestation: Carbon fluxes from deforestation remain the single most important direct human forcing of the terrestrial carbon balance, and the component of the global carbon budget with the largest uncertainty. To reduce this uncertainty, we need
 - Improved measurements of deforestation rates (including selective logging) from remote sensing
 - Improved biomass densities to calculate carbon emission factors
 - Improved knowledge of the time courses of carbon fluxes following deforestation (e.g. biomass cleared in 1 year may be burned in following years, and there are time lags associated with soil respiration). Yearly measurements deforestation would also help to attribute annual fluctuations in atmospheric CO$_2$ growth (current deforestation data is available only in increments of 5–10 years)

- Fire: This is another key process responsible for a large part of the perturbations in the annual CO$_2$ growth. Global improvement in estimates of both burned area and carbon emissions from fire will need to rely on atmospheric networks and remote sensing products. These observations include increased focus on (1) use of CO and CH$_4$ to quantify the contribution of fires to the atmospheric CO$_2$ growth (Langenfelds et al. 2002), (2) extraction of burned area (monthly) and hot spots (daily) from remote sensing, (3) ground and remote sensing observations of vegetation recovery after fire (when not linked to deforestation).
2.5.2 Pools

In addition to existing and currently planned inventory networks for monitoring terrestrial carbon pools, two kinds of observations emerge as critical from a vulnerability standpoint:

- **Carbon in frozen soils**: Section 2.4 has offered a semi-quantitative analysis of the significant carbon–climate vulnerability associated with carbon stored in frozen soils at high northern latitudes, which are susceptible to decomposition under global warming. To improve estimates such as this one, it is important to monitor thawing trends and the resulting carbon emission, particularly its distribution between CO$_2$ and CH$_4$. Key measurements are:
 - Monitoring of the permafrost southern limit and changes in depth of permafrost
 - Carbon content in frozen soils, to full profile depth (substantially deeper than 1 m)
 - Measurements of vertical fluxes of CO$_2$ and CH$_4$ with eddy-covariance (local) and atmospheric-inverse (large regional) methods
 - Measurement of lateral carbon fluxes to rivers and the coastal zone

- **Peatlands**: Both in high latitudes (as a continuum of permafrost) and in the tropics, peatlands require careful monitoring of changes in stocks and fluxes under the influences of warming and changes in the hydrological cycle. Particularly in the tropics, changes in hydrological regime result both from climate change and from human activities such as drainage. Key measurements (similar to those for frozen soils) include:
 - Monitoring of tropical peatland deforestation and drainage
 - Carbon content to full profile depth (substantially deeper than 1 m)
 - Monitoring of vertical and lateral fluxes in both cold and tropical peatlands
 - Monitoring of subsidence rates of drained peatland forests

2.6 Conclusion

In Sect. 2.3, we identified several major carbon–climate vulnerabilities: limitation of CO$_2$ fertilisation by water and nutrient constraints, the response of soil respiration and NPP to warming and moisture, permafrost thawing, fire and ecosystem responses to a variety of land-use changes. A semi-quantitative assessment in Sect. 2.4 of just one of these vulnerabilities (the CO$_2$ consequence of permafrost thawing) suggests a perturbation on global CO$_2$ in 2100 of about 80 ppm and a temperature perturbation of about 0.7 °C, relative to a prediction under the A2 emissions scenario in which this positive feedback is absent. The temperature perturbation is a conservative estimate because of the neglect of warming due to CH$_4$. It is reasonable...
to conclude that the sum of all the vulnerabilities discussed in Sect. 2.3 is not negligible relative to the primary forcing of the climate system by anthropogenic CO_2. The implication for carbon observation is to focus attention on the process measurements and monitoring programmes needed to track and better quantify the feedback processes leading to these vulnerabilities.

Acknowledgements The work described here is a contribution to Theme 2 (Processes and Interactions) of the Global Carbon Project (www.globalcarbonproject.org). We are grateful to Cathy Trudinger and Will Steffen for constructive comments on drafts of this work, and Peter Briggs for assistance with figures. MRR thanks the CarboEurope Integrated Program for support to attend the CarboEurope Greenhouse Gas Workshop, Amsterdam, 4–5 April 2005, which prompted the writing of this chapter. We thank the Australian Greenhouse Office and CSIRO for supporting the GCP International Project Office in Canberra.

References

