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The Activity

The Global Methane Budget is the new companion activity of the Global Carbon Budget
activity http://www.globalcarbonproject.org/carbonbudget of the Global Carbon Project, a
project of the IGBP, WCRP, IHDP, and Diversitas.

The activity aims to update the budget on a regular basis (annually or bi-annually) and
extend its analysis.

It focuses on analyses and syntheses of existing data, models, and estimates from bottom-up
approaches (inventories, models) and top-down approaches (atmospheric inversions).

It relies on contributions from a number of networks and institutions (see
Acknowledgements)

— Observational networks (NOAA, CSIRO, UCI, AGAGE)

— Inventories (EDGAR, EPA, TIASA)

— Wetland models, biomass burning data sets

— Inverse modeling systems for atmospheric transport

— Chemical transport models for OH sink

Global Methane Budget Website http://www.globalcarbonproject.org/methanebudget

This effort has contributed to the IPCC 5™ Assessment Report, Working Group I, Chapter 6
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Three decades of global methane sources and sinks
Stefanie Kirschke etal.”

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases
since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere
and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative
contributions to atmospheric methane levels are highly Assuch, forthe obser

of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal
budgets for methane sources and sinks between 1980 and 2010, using a of results
from ch cal models, models, climate chemistry models and inventories of anthropogenic emissions. The
resultant budgets suggest that data-driven approaches and models total natural ‘We build
three contrasting emission scenarios — which differ in fossil fuel and microbial emissions — to explain the decadal varlability
in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties In emission trends
do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and
2006 can be by to-stable fossil fuel t microbial
emlissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed

increase In global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

between 1850 and the 1970s have been made using air trapped

in polar ice cores and compacted snow. The data reveal
an exponential increase in CH, levels in the atmosphere from
830 ppb to 1500 ppb in the late 1970s'. Direct measurements of
CH, in the atmosphere began in 1978%, and reached global cover-
age after 1983. Today, CH, concentrations can be assessed nsing
discrete air samples collected regularly af the surface, conting-
ous measurements made at the surface*® or in the trop

R econstructions of atmospheric methane (CH,) concentrations

fluxes with those simulated by ecosystem models of wetland and
biomass burning emissions and by data-driven approaches for other
natural sources (Methods and Supplementary Section IT). We also
gather recent data from fossil fuel CH, emission inventories based
on energy use statistics, and from agricultural and waste inventories
based on livestock and rice paddy statistical data.

Sources and sinks.
The global at ic CH, budget is determined by many terres-

and remotely sensed measurements of atmospheric CH, culumns
retrieved from the surface or from space™? (see Supplementary
Section ST1). Surfice-based observations from four networks
(National Oceanic and Atmospheric Administration, NOAAY;
Advanced Global Atmospheric Guses Experiment, AGAGEY
Commonwealth Scientific and Industrial Research O i

trial and aquatic surface sources, balanced primarily by one sink in
the atmosphere. CH, emissions can be broadly grouped into three
categories biogenic, thermeogenic and pyrogenic. Biogenic sources
contain CH,-generating mictobes (methanogens)¥, and comprise
anaerobic environments such as natural wetlands and rice paddies,

CSIROS; and University of California Irvine, UCI'*) show consist-
ent changes in the global growth rate of annual CH, concentrations
since 1980 (Fig. 1 and Supplementary Section 5T1). The agreement
between these networks has improved with increasing coverage.
The standard deviation for the global annual growth rate decreased
from 3.3 ppb yr! in the 1980s to +1.3 ppb yr! in the 2000s, These
data reveal a sustained increase in atmospheric CH, levels in the
1980s (by an average of 12 + 6 ppb yrY), a slowdown in growth in
the 1990s (6 + 8 ppb yr?), and a general stabilisation from 1999
to 2006 to 1773 + 3 ppb. Since 2007, CH, levels have been rising
again®, and reached 1799 + 2 ppb in 2010. This increase reflects
a recent imbalance between CH, sources and sinks that is not yet
fully understood®.

Previous reviews of the global CH, budget have focused on
results from a few studies only'**. These studies covered differ-
ent time windows and employed different assumptions, making it
difficult to interpret the decadal changes presented. Only very few
studies addressed multi-decadal changes in CH, levels®*. Here we
construct a global CH, budget for the past three decades by com-
bining bottom-up and top-down estimates of CH, sources and the
chemical CH, sink (Box 1). We use chemical transport models —
constrained by atmospheric CH, measurements — to estimate CH,
fluxes using top-down atmospheric inversions. We compare these

oxyg reservoirs (such as dams), digestive sys-
tems of rummanls and termites, and organic waste deposits (such
as manure, sewage and landfills). Thermogenic CH,, formed over
millions of years through geological processes, is a fossil fuel. It is
vented from the subsurface into the atmosphere through natural
features (such as terrestrial seeps, marine seeps and mud volca-
noes), and through the exploitation of fossil fuels, that s, through
the exploitation of coal, oil and natural gas. Pyrogenic CH, is pro-
duced by the incomplete combustion of biomass and soil carbon
during wildfires, and of biofuels and fossil fuels. These three types of
emissions have different isotopic 6C signatures (8°C = [(*C/**C)
sanptel (PC/C)yiantan] — 1) % 1000): =55 to —70%. for biogenic emis-
sions, ~25 to ~55% for thermogenic emissions, and 13 to —25%«
for pyrogenic emissions™35, The isotopic compaosition of atmos-
pheric CH, — measured at a subset of surface stations — has there-
fore been used to constrain its source® . CH, emissions by living
plants under aerobic conditions do not seem to play a significant
1ole in the global CH, budget {Supplementary Section ST8); some
very large® estimates of this source published in 2006 have not
been confirmed®™.

‘The primary sink for atmospheric CH, is oxidation by hydroxyl
radicals (OH), mostly in the tropasphere, which accounts for around
90% of the global CH, sink. Additional oxidation sinks include
methanotrophic bacteria in serated soils™* (~4%), reactions with

*Afull list of authors and ther affiliations appaars at the end of the paper.
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After carbon dioxide (CO,), methane (CH,)
is the second most important well-mixed
greenhouse gas contributing to human-
induced climate change.

In a time horizon of 100 years, CH, has a
Global Warming Potential 28 times larger
than CO..

CH, is responsible for 20% of the global
warming produced by all well-mixed
greenhouse gases, and constitutes 60% of
the climate forcing by CO, (0.97 Wm-=2 vs
1.68 Wm) since pre-Industrial time.

Annual globally averaged CH,
concentration was 1803 %4 parts per
billion in 2011 and 722 ppb in 1750. 150%

increase since pre-Industrial time.
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CH, contributes to water vapor in the
stratosphere, and to ozone production in
the troposphere, the latter a pollutant
with negative impacts on human health
and ecosystems.

The atmospheric life time of CH, is
approximately 10=%2 years.

IPCC WGI 2013; Voulgarakis et al. 2013, Atmos. Chem. Phys.



Atmospheric
Observations

Ground-based
data from
observation
networks (AGAGE,
CSIRO, NOAA,
UClI).

Airborne
observations.

Satellite data.

Emission
Inventories

Agriculture and
waste related
emissions, fossil
fuel emissions
(EDGAR, EPA,
IIASA).

Fire emissions
(GFED, GICC,
FINN, RETRO).

Biogeochemistry

Models

The Tools and Data

Ensemble of
different wetland
models, (LPJ-
WHyMe, LPJ-wsl,
ORCHIDEE).

Data and models
to calculate
annual flooded
area.

Inverse Models

Suite of different
atmospheric
inversion models
(TM5-4DVAR,
LMDZ-MIOP,
CarbonTracker-
CH,, GEOS-Chem,
LMDZt-SACS,
MATCH, TM2,
GISS).

TransCom
intercomparison.

OH Sink

Long-term trends
and decadal
variability of the
OH sink.

ACCMIP CTMs
intercomparison.
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CH, Atmospheric Growth Rate, 1983-2009
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CH, Atmospheric Growth Rate [ppb/yr]
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Kirschke et al. 2013, Nature Geoscience; Data from NOAA, CSIRO, AGAGE, UCI atmospheric networks



METHANE BUDGET : 1980-89

ATMOSPHERE

Methane reservoir Cumulative changes
in atmosphere prior to the

Industrial Era (in TgCH,)

over the Industrial

2576 (+263) [ataililitlig
: : Era 1750-1989

(decadal growth)

Stratospheric Tropospheric Tropospheric Hydrates  Freshwaters Wetlands  Oxydation Geological Rice Ruminants Termites Biomass Landfills Fossil fuels
loss OH L] in soils sources burning and waste
46 468 25 6 40 225 28 54 43 85 1 37 55 89
(16-67) (382-567) (13-37) (2-9) 8-73) (183-266) (9-47) (33-75) {(41-47) {81-90) (2-22) (32-40) (50-60) (89-89)

GLOBALRCARBON

Global Carbon Project 2013; Figure based on Kirschke et al. 2013, Nature Geoscience



METHANE BUDGET : 1990-99

ATMOSPHERE

Methane reservoir Cumulative changes
in atmosphere prior to the 2 | 2839 3121) over the Industrial
Industrial Era (in TgCH,) ] ' Era 1750-1999

(decadal growth)

Stratospheric Tropospheric Tropospheric Hydrates  Freshwaters Wetlands  Oxydation Geological Rice Ruminants Termites Biomass Landfills Fossil fuels
loss OH L] in soils sources burning and waste
67 479 25 6 40 206 28 54 35 86 1 45 65 84
{51-83) (457-501) (13-37) (2-9] 8-73) (169-265) (9-47) (33-75) (82-91) (222} (39-50) (63 68) (66-96)

GLOBALRCARBON

Global Carbon Project 2013; Figure based on Kirschke et al. 2013, Nature Geoscience



METHANE BUDGET : 2000-09

ATMOSPHERE

Cumulative changes
over the Industrial
Era 1750-2009
(decadal growth)

Methane reservoir
in atmosphere prior to the

Industrial Era (in TgCH,)

Stratospheric Tropospheric Tropospheric Hydrates  Freshwaters Wetlands Oxydation Geological Rice Ruminants Termites Biomass Landfills Fossil fuels
loss OH cl in soils sources burning and waste
51 528 25 6 40 217 28 54 36 89 1 38 75 96
(16-84) (454-617) (13-37) (2-9) (8-73) (177-284) (9-47) (33-75) (33-40) (87-94) (2-22) (33-44) (67-90) (85-105)

Global Carbon Project 2013; Figure based on Kirschke et al. 2013, Nature Geoscience

EXCHANGES BY SOURCE

in teragrams CHa / year

GLOBALNCARBON
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Tg CHa yr-!

Sources
Natural Sources

1980-1989

Botiom-Up Botiom-Up Bottom-Up

203 [150-267]

355 1244-466]

1990-1999

182 [167-197]

2000-2009

336 12304651 218)179-273]

Natural Wetlands | 167 [115-231]| 225 [183-266]| 150 [144-160] | 206 [169-265] 142-208]
Other Sources | 36 [35-36] 130 [61-200] | 32 [23-37] 130 [61-200] 43 [37-65] :
Anthropogen. Sources | 348 (305-383]| 308 [292-323] 372 2904531 | 313 [281-347] | 335 1273409 | 331 [304-368]
Agriculture & Waste | 208 [187-220]| 185 [172-197] | 239 [180-301) | 187 [177-196] | 209 [180-241] | 200 [187-224]
Rice 43 [4147] 35 [32-37] 36 [3340]
Ruminants 85 [31-90] 86 [82-91] 89 [87-04]
Landfills & Waste 55 [50-60] 65 [63-68] 75 [67-90]
Biomass Burning | 46 [43-55] 34 [31-37] 38 [26-45] 42 [38-45] 30 [24-45] 35 [32-39]

Fossil Fuels

Total Chemical Loss

Global
Sum of Sources

94 [75-108]

50-533] 539 11-671] | 525 [491-554] @ 521-621] | D18 [510-53]

663 [536-789]

551 [500-592]

89 [89-89]

95 [84-107]

554 (529-596]

84 [66-96]

649 (511-812]

96 [77-123]

548 [526-569]

(@ 542-852]

Sum of Sinks

511 460-559]

539 420-718]

542 (518-579]

596 [530-668]

540 [514-560]

96 [85-105]

483-738]

Imbalance
(Sources-Sinks)

30 [16-40]

12 [7-17]

8 [4-19]

Atmospheric
Growth Rate

34

17

6

000 O

Larger global total emissions from Bottom-Up (inventories, models) than Top-
Down (atmospheric inversions) because of larger natural emissions
Large uncertainties remain for wetland emissions (min-max range)
~50 Tg global imbalance in B-U approaches (T-D constrained by atmosphere)
Increasing OH loss between decades in B-U (not clear in T-D)
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Evolution of Uncertainty: Decadal Budgets

- No source or sink reaches the maximum level of confidence (large green circle)
- Robustness is larger in the 2000s than in previous decades
- Agreement can go down as more studies appear (e.g. fire, wetlands, OH, ...)

i i Robustness
T-D B-U T-D B-U T-D B-U (# studies)
Natural 1.9
Wetlands ® e :
4-6
Other : ;
Sources o . . o 7-9
Agriculture
and Waste o ¢ . ¢ Agreement
: (between studies)
Biomass . . . . . High (<33% difference)
Burning
Low (>66% difference)
Fossil . e o : o
Fuels
o | R
Chemical Sink : ?

1980-1989  1990-1999 = 2000-2009

Kirschke et al. 2013, Nature Geoscience



Regional Methane Budget

Global

Dominance of wetland
emissions in the tropics
and boreal regions

Dominance of agriculture
& waste in India and
China

Balance between
agriculture & waste and
fossil fuels at mid-
latitudes

Uncertain magnitude of
wetland emissions in
tropical South America
between T-D and B-U
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Kirschke et al. 2013, Nature Geoscience
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Anthropogenic Methane Sources (2000s)

Biomass
Burning &
Biofuels
30-40 Tg/yr

Fossil fuels
85-105 Tg/yr

Domestic
ruminants
85-95 Tg/yr
Waste
Rice cultivation decomposition
30-40 Tg/yr 65-90 Tg/yr

Global Carbon Project 2013; Figure based on Kirschke et al. 2013



Natural Methane Sources (20005s)
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JJ‘

Geological Hydrates Permafrost
(incl. Oceans)  1-10 Tg/yr 0-1Tg/yr

Termites 30-75 Tg/yr
2-20 Tg/yr

Wildfires
1-5 Tg/yr

Wild
animals
15 Tg/yr

140-280 Tg/yr ——

Freshwaters
10-70 Tg/yr

Global Carbon Project 2013; Figure based on Kirschke et al. 2013
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Methane Sinks (2000s)

Tropospheric
chlorine Soil uptake

15-40 Tg/yr 10-45 Tg/yr

Stratospheric
chemistry
15-85 Tg/yr

Tropospheric
OH
450-620 Tg/yr

Global Carbon Project 2013; Figure based on Kirschke et al. 2013



Agriculture/Waste CH, Emissions
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Emission Agriculture/Waste in TgCH4

200 220 240 260

180

LMDZ-MIOP (T-D)
CarbonTracker—-CH4 (T-D)
TM5-4DVAR (T-D)
GEOS-Chem (T-D)
LMDZt-SACS (T-D)

—— EDGARv4.2 (B-U)

(T-D) Top-Down estimates

(B-U) Bottom-Up estimates

I I I I I I I
1980 1985 1990 1995 2000 2005 2010

Year

Global Carbon Project 2013; Figure based on Kirschke et al. 2013. Data sources shown in figure.



Biomass Burning CH, Emissions
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Emission Biomass Burning in TgCH4

80

60

40

20

—— LMDZ-MIOP (T-D) (T-D) Top-Down estimates
= = CarbonTracker—-CH4 (T-D) (B-U) Bottom-Up estimates
TM5-4DVAR (T-D)

- GEQOS-Chem (T-D)

— . LMDZt-SACS (T-D)
—— GFEDv2 (B-U)
- = GFEDv3 (B-U)

.+ RETRO (B-V)

- GIcc (B-U)

-— ™ ~
- —_— =¥ . —_— - =

I I I I I I I
1980 1985 1990 1995 2000 2005 2010

Year

Global Carbon Project 2013; Figure based on Kirschke et al. 2013. Data sources shown in figure.



Wetland CH, Emissions, 1980-2009
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Emission Wetlands in TgCH4

140 160 180 200 220

120

(T-D) Top-Down estimates

LMDZ-MIOP (T-D) (B-U) Bottom-Up estimates

CarbonTracker—-CH4 (T-D)
TM5-4DVAR (T-D)

GEOS-Chem (T-D) TR -
LMDZt-SACS (T-D) - TN

LPJ-ws! (B-U) N T
LPJ-WHyMe (T-D) o
ORCHIDEE (T-D)

1980

1985 1990 1995 2000 2005 2010

Year

Increase 2005-2009 in
B-U models due to
precipitation forcing
(increase in tropical
land precipitation)

Global Carbon Project 2013; Figure based on Kirschke et al. 2013. Data sources shown in figure.



Fossil Fuel CH, Emissions
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Emission Fossil Fuels in TgCH4

70 80 90 100 110 120 130

60

LMDZ-MIOP (T-D) (T-D) Top-Down estimates
CarbonTracker—-CH4 (T-D) (B-U) Bottom-Up estimates
TM5-4DVAR (T-D)
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Spatial Distribution of Fluxes

mg.m*d’ Wetland emission flux 1990-2006

Kirschke et al. 2013, Supplementary Information, Nature Geoscience
Data sources: Wetland emissions (ORCHIDEE, LPJ-WHyMe, LPJ-wsl), Biomass burning emissions: GFED2, GFED3, RETRO, GICC).



Interannual Variability of CH, Emissions

Natural wetlands dominate IAV with contribution of BBG during large fires events

Trends in emissions are not fully consistent between models (cf fossil, wetlands)
Causes of the stabilisation period (1999-2006) and increasing period (>2006) still
uncertain (fossil / wetlands?)

Anomaly of CH, emissions by categories (Tg/yr)
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Interannual Variability by Latitude
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Results of the Scenario Analysis o

Stabilisation period (1999-2006):

- Decreasing to stable fossil fuel emissions and stable to
increasing microbial emissions are more likely

Resumed atmospheric increase (>2006) :

- Mix of fossil fuel and wetland emissions increase, but
relative magnitude remains uncertain




Final Key Points ‘Cb

Among datasets and models, consistency is higher on anthropogenic
decadal emissions than natural ones.

The large uncertainties in the mean emissions from natural wetlands limit
our ability to fully close the CH, budget.

Global emissions as inferred from the sum of all individual emission sources
are likely too high as they cannot use the overall atmospheric constraint.

Little ability of the top-down atmospheric inversions to partition emissions
among source types.

Still large uncertainties on decadal means but reduced compared to the
IPCC 4th Assessment Report.

Interannual variability is dominated by natural wetlands, with short-term
impacts of biomass burning. More robust than decadal means.

1999-2006 : =N fossil fuel emissions with =@ microbial emissions more
likely than other tested scenarios.

Changes after 2005 still debated between & wetlands and @ fossil fuels

Improved agreement for a small OH interannual variability in the 2000s
between top-down and bottom-up estimates.
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