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All data are shown in

teragrams CH4 (TgCH4) for emissions and sinks
parts per billion (ppb) for atmospheric concentrations

1 teragram (Tg) = 1 million tonnes = 1×1012g
2.78 Tg CH4 per ppb

Disclaimer
The Global Methane Budget and the information presented here are intended for those interested in learning about 
the carbon cycle, and how human activities are changing it. The information contained herein is provided as a public 

service, with the understanding that the Global Carbon Project team make no warranties, either expressed or 
implied, concerning the accuracy, completeness, reliability, or suitability of the information.



Context & Methods



The methane context

• After carbon dioxide (CO2), methane (CH4) is the 
most important greenhouse gas contributing to 
human-induced climate change. 

• For a time horizon of 100 years, CH4 has a Global 
Warming Potential 28 times larger than CO2. 

• Methane is responsible for 23% of the global 
warming produced by CO2, CH4 and N2O.

• The concentration of CH4 in the atmosphere is 
150% above pre-industrial levels (cf. 1750).

• The atmospheric lifetime of CH4 is 9±2 years, 
making it a good target for climate change 
mitigation

• Methane also contributes to tropospheric production 
of ozone, a pollutant that harms human health, foof
production and ecosystems. 

• Methane also leads to production of water vapor in the 
stratosphere by chemical reactions, enhancing global 
warming.

Etheridge et al., JGR, 1996; 1998

MacFarling Meure et al., GRL, 2006

Rubino et al., ESSD, 2019

Updated to 2020

Sources : Saunois et al. 2016; 2020, ESSD; IPCC 2013 5AR; Etminan et al. 2016



Top-down budget

Ground-based 
data from 
observation 
networks (AGAGE, 
CSIRO, NOAA, UCI, 
LSCE, others).

Satellite data 
(GOSAT)

Agriculture and 
waste related 
emissions, fossil 
fuel emissions 
(EDGARv4.3.2,CEDS, 
USEPA, GAINS, FAO).

Fire emissions 
(GFED4s, FINN, 
GFAS,QFED, FAO).

Biofuel estimates

Ensemble of 13 
wetland models

Model for termites 
emissions

Other sources 
from literature 
(inland water, 
geological, wild 
animal…)

Suite of 9 
atmospheric 
inversion models 
(CTE-CH4, GELCA, 
PYVAR-LMDz, MIRO4-
ACTM, NICAM-TM, 
NIES-TM FLEXPART, 
TM5-CAMS, TM5-
4DVAR-NIES, 
TOMCAT).

Ensemble of 22 
inversions (diff. obs
& setup) 

OH sink from 
CCMI experiment.

Soil uptake & 
chlorine sink 
taken from  the 
literature

An ensemble of tools and data to estimate the global methane budget

Atmospheric 
observations

Methane sinks Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories

Bottom-up budget



CH4 Atmospheric Growth Rate 2000-2017

Source: Saunois et al. 2020, ESSD (Fig. 1)

• Slowdown of  atmospheric
growth rate before 2006

• Resumed increase after 2006

Atmospheric 
observations



Observed Concentrations Compared to IPCC Projections

The projections represented here correspond to RCPs defined for IPCC 5th Assessment Report

• Methane concentrations rose faster in 2014, 2015 and 2019 with more than 10 ppb/yr.
• Since 2013, the atmospheric increase is approaching the warmest scenario of IPCC AR5 report

Observations: Globally averaged
marine surface annual mean data 
from NOAA 



Anthropogenic emissions: 
• All inventories, except EPA, infers an 

increase in emissions as fast as the 
warmest scenarios between 2005 
and 2017. 

Anthropogenic Methane Emissions & Socioeconomic Pathways (SSPs)

Emission 
inventories Source: Saunois et al. 2020, ESSD (Fig. 2)

The projections represented here correspond to SSPs defined for IPCC 6th Assessment Report

Atmospheric 
observations

http://cdiac.ornl.gov/trends/emis/meth_reg.html


Atmospheric concentrations: 
• Atmospheric observations (black line) 

fall between the estimates of the 
different scenarios 

=> Monitoring of future years trends in 
emissions and concentration is critical to 
assess mitigation policy efficiency

Methane Concentrations & Socioeconomic Pathways (SSPs)

Emission 
inventories Source: Saunois et al. 2020, ESSD (Fig. 2)

The projections represented here correspond to SSPs defined for IPCC 6th Assessment Report

Atmospheric 
observations

http://cdiac.ornl.gov/trends/emis/meth_reg.html


Decadal emissions
& sinks



Global Methane Budget 2008-2017

Source: Saunois et al. 2020, ESSD (Fig. 6)



Global Methane Budget 2017

Source: Jackson et al. 2020, ERL (Fig. 1)

Top-down 
budget



Source: Saunois et al. 2020, ESSD (Fig 3); 

Biogeochemistry 
models & data-
driven methods

Mapping of the largest methane source categories

Emission 
inventories

Bottom-up 
budget



Source: Saunois et al. 2020, ESSD

Biogeochemistry 
models & data-
driven methods

• Wetlands are the largest natural global CH4 source

• Vegetated wetland emissions are estimated using an ensemble of
land-surface models constrained with remote-sensing based surface
water and inventory based vegetated wetlands

• The resulting global flux range for natural wetland emissions is 102–
182 TgCH4/yr for the decade of 2008–2017, with an average of 149
TgCH4/yr.

Wetland methane emissions Bottom-up 
budget



Source: Saunois et al. 2020 (Fig 4)

Biogeochemistry 
models & data-
driven methods

Mapping other natural sources

Other natural sources not mapped here are inland water emissions, permafrost and hydrates

Bottom-up 
budget



Tropospheric 
OH

489-749 Tg/yr

Stratospheric 
chemistry

12-37 Tg/yr

Tropospheric 
chlorine

1-35Tg/yr
Soil uptake
10-45 Tg/yr

Methane Sinks (2000s)

Source : Saunois et al., 2020 Methane sinks

Bottom-up 
budget



Inland waters 209 [70%]

Geological 45  [100%]

Termites 9 [100%]

Oceans          6 [100%]

Wild animals 2 [100%]

Permafrost 1 [100%]

Global Methane Emissions 2008-2017

 Natural wetlands➔

Other natural emissions➔
Biomass/biofuel burning➔

 Fossil fuel  ➔

 Agriculture & waste ➔

181 [20%]149 [50%]

Top-down budget
Atmospheric inversions

576 TgCH4/yr [550-594]

Bottom-up budget
Process models, inventories, 

data driven methods
737 TgCH4/yr [584-881]

Mean [min-max range %]

37 [80%]222 [70%]

30 [50%]30 [30%]

111 [50%]128 [30%]

217 [15%]206 [15%]

Coal 42 [80%]

Gas & oil 80 [30%]

Industry and transport         7 [250 %] 

Rice         30 [40%]

Enteric ferm & manure 111 [10%]

Landfills & waste 65 [15%]

Source : Saunois et al. 2020, ESSD

Top-down budgetBottom-up budget

Bottom-up budget Top-down budget

(TgCH4/yr)

Mean [uncertainty = min-max range %]

Mean [uncertainty=
min-max range %]



• Global emissions:

576 TgCH4/yr [550-594] for TD

737 TgCH4/yr [594-881] for BU

• TD and BU estimates generally agree for agricultural emissions

• Estimated fossil fuel emissions are lower for TD than for BU

approaches

• Estimated wetland emissions are higher for TD than for BU

approaches

• Large discrepancy between TD and BU estimates for freshwaters

and natural geological sources (“other natural sources”)

Global Methane Emissions 2008-2017

Source: Saunois et al. 2020, ESSD (Fig 5) 

Top-down, left; Bottom-up, right

Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories



Methane emissions by latitudinal bands 2008-2017
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Source: Saunois et al. 2020, ESSD (Fig 7) 

Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories

64%

32%

4%

Tropics (< 30°N)

Mid-latitudes (30°N-60°N)

Northern high latitudes (60°N-90°N)

Contribution to global emissions



Regional Methane Sources (2017)

• 64% of global methane emissions come mostly from tropical sources
• Anthropogenic sources are responsible for about 60% of global emissions.
• Largest emissions in South America, Africa, South-East Asia and China (50% of global emissions)
• Dominance of wetland emissions in the tropics and boreal regions
• Dominance of agriculture  & waste in Asia 
• Balance between agriculture & waste and fossil fuels at mid-latitudes

Source: Jackson et al. 2020 ERL  (Fig 2) 

Top-down 
budget

Inverse models 



An interactive view of the methane budget

Source: Carbon Atlas

Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories

www.globalcarbonatlas.org

http://www.globalcarbonatlas.org/


Emission
changes



Changes in Methane Sources

Inverse models 

Emission changes between 2000-2006 and 2017

Error bar = min-max estimates

• About 50 TgCH4/yr emissions increase between 2000-2006 and 2017

• Increase mainly from the Tropics (about 30 TgCH4/yr), followed by mid-latitudes (15-20 TgCH4/yr )

• Regional contributions from Africa and Middle East, China and rest of Asia

• Increase in North America driven by the increase from USA

• Decrease in Europe

Top-down, left; Bottom-up, right

Biogeochemistry 
models & data-
driven methods

Emission 
inventories

Source: Jackson et al. 2020 ERL  (Fig 2) 



Source: Jackson et al. 2020 ERL  (Fig 2) 

Top-down 
budget

Inverse models 

Emission changes between 2000-2006 and 2017

Error bar = min-max estimates

Changes in Methane Sources

Top-down, left; Bottom-up, right

• Global increase mainly from anthropogenic
sources equally between Agriculture and Waste
and Fossil Fuel 

• Fossil Fuel emissions increased in China, 

North America (USA), Africa, and Asia

• Agriculture and Waste emissions increased

mostly in Africa, Southern Asia and South 

America

• Emissions decreased in Europe from both

Fossil Fuel and Agriculture and Waste

sources

Biogeochemistry 
models & data-
driven methods

Emission 
inventories



Sink
changes



• Hydroxyl radical, OH is the main oxidant of CH4, responsible of about 90% of methane removal in the atmosphere.

• Two approaches derive estimates of OH quantity in the atmosphere:
1. Chemistry climate models that includes hundreds chemical reactions between numerous species
2. Box-modeling based on methyl-chloroform (MCF) observations

• Both approaches derive a 10-15% uncertainty on global OH mean concentrations.

Concentrations of OH the troposphere

Chemistry Climate models MCF-based box modelling

AGAGE
NOAA

Source: Rigby et al. 2017Source: Zhao et al. 2019



OH inter-annual variability and trend

• Chemistry climate models derive a null to positive trend in OH over 2000-2017

• MCF-based box modelling suggest a positive trend in OH over 1997-2005 followed by a negative trend from 2005 
onward

 High uncertainty remains on OH trend and interannual variability

Source: Ganesan et al. 2020
Source: Zhao et al. 2019

MCF-based box modelling versus chemistry climate models
OH anomaly 1980-2015

Chemistry climate models

MCF-based studies Chemistry climate models



OH uncertainty & impact on CH4 emissions

• Methane emissions derived by top-down  systems are dependent of the OH sink prescribed
• The range derived by an ensemble of top-down approaches in Saunois et al. (2020) is narrower than the one derived 

by a single top-down system when  testing several OH distributions (from chemistry climate models)
• The uncertainty in global total methane emissions is probably underestimated in Saunois et al. (2020)

Top-Down estimates
for 2000-2009

Saunois et al. (2020)

Source: Zhao et al. 2020, ACP

Estimated CH4 total emissions in year 2001 by one single top-down system using different OH distributions



Impact of OH change in the methane sink

Source : Dalsoren et al., 2016

• OH increase before 2007 could explain part 

of the stabilization of atmospheric methane

• Stagnation or decrease in OH radicals can 

contribute to explain  : 

▪ the renewed increase of atmospheric 

methane since 2007

▪ The lighter atmosphere in 13C isotope 

since 2007  

Stabilisation



• Need to understand which changes in emissions are responsible for both increasing atmospheric methane 

and decreasing d13C-CH4 since 2007

1867 ppb reached in 2019 !

CH4 Growth rates : 

2014 : 12.7±0.5 ppb yr-1

2015 : 10.1±0.7 ppb yr-1

2016 :   7.0±0.6 ppb yr -1

2017 :   7.0±0.9 ppb yr-1

2018 :   8.5±0.6 ppb yr-1

2019 :  10.7±0.6 ppb yr-1

d13C-CH4 decreased by -0.2‰ in 10 years
Global surface d13C-CH4

NOAA Global surface CH4

Since 2007: a sustained atmospheric CH4 growth and d13C-CH4 decrease

Source : Nisbet et al., 2019

Stabilisation
Renewed growth

Decline



Highlights

• Atmospheric CH4 concentrations are rising faster over the last decades than in the 2000s. Since 2013, the trend in
atmospheric methane concentrations is closer to the most greenhouse-gas-intensive scenarios of IPCC AR5 than
scenarios integrating mitigation policies.

• Anthropogenic sources are responsible for all or most of the recent rapid rise in global CH4 concentrations, equally
from agriculture and fossil fuels sources. Tropical regions play the most significant role as contributors to the
atmospheric growth.

• The role of methane sinks has to be further explored as a slower destruction of methane by OH radicals in the
atmosphere could have also contributed to the observed atmospheric changes of the past decade. However high
uncertainties on OH burden and trend prevent any solid conclusions.

• Methane global emissions were 576 TgCH4/yr [550-594] for 2008-2017 as inferred by an ensemble of atmospheric
inversions (top-down approach) using an atmospheric constraint.

• Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly
complementary to CO2 mitigation.

• Emission estimates from inventories/models (bottom-up approach) show larger global totals because of larger
natural emissions. Improved emission inventories and estimates from inland water emissions are still needed.



www.globalcarbonatlas.org

Explore GHG emissions globally and by country and 
download data and illustrations. Also explore ‘Outreach’ 
and ‘Research’.

Global Carbon Atlas

http://www.globalcarbonatlas.org/


NASA 3D visualization

The methane budget, using data from Saunois 2020, can be visualized in 3D at: https://svs.gsfc.nasa.gov/4799

https://svs.gsfc.nasa.gov/4799
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