Global Methane Budget 2020

The Global Methane budget for 2000-2017
Acknowledgements

The work presented here has been possible thanks to the enormous observational and modeling efforts of the institutions and networks below.

Atmospheric CH\(_4\) datasets
- NOAA/ESRL (Dlugokencky et al., 2011)
- AGAGE (Rigby et al., 2008)
- CSIRO (Francey et al., 1999)
- UCI (Simpson et al., 2012)

Top-down atmospheric inversions
- CarbonTracker-Europe CH\(_4\) (Tsuruta et al., 2017)
- GELCA (Ishizawa et al., 2016)
- LMDz-SACS- PYVAR (Zheng et al., 2018a; 2018b; Yin et al., 2015)
- MIROC4-ACTM (Patra et al., 2016; 2018)
- NICAM-TM (Niwa et al., 2017b; 2017b)
- TM5-4DVAR (Houweling et al., 2014)
- NIES-TM- Flexpart (Maksyutov et al., 2020; Wang et al., 2019a)
- TM5-CAMS (Pandey et al., 2016; Segers and Houwelling, 2018)
- TM5-4DVAR (Bergamaschi et al., 2013, 2018)

Bottom-up modeling
- Description of models contributing to the Chemistry Climate Model Initiative (CCMI) (Morgenstern et al., 2017)
- Description of OH fields from CCMI (Zhao et al., 2019)

Bottom-up studies data and modeling
- CLASS-CTEM (Arora et al. 2018; Melton and Arora, 2016)
- DLEM (Tian et al., 2010; 2015)
- ELM (Riley et al., 2011)
- JSBACH (Kleinen et al., 2019)
- JULES (Hayman et al., 2014)
- LPJ-GUESS (McGuire et al., 2012)
- LPJ-MPI (Kleinen et al., 2012)
- LPJ-wsl (Zhang et al., 2016)
- LPX-Bern (Spanhi et al., 2011)
- ORCHIDEE (Ringeval et al., 2011)
- TEM-MDM (Zhuang et al., 2004)
- TRIPLEX-GHG (Zhu et al., 2104; 2015)
- VISIT (Ito ad Inatomi, 2012)
- FINNv1.5 (Wiedinmyer et al., 2011)
- GFASv1.3 (Kaiser et al., 2012)
- GFEDv4.1s (Giglio et al., 2013)
- QFEDv2.5 (Darmenov and da Silva, 2015)
- CEDS (Hoesly et al., 2018)
- IIASA GAINS ECLIPSEv6 (Höglund-Isaksson, 2012)
- EPA, 2012
- EDGARv4..3.2FT (Janssens-Maenhout et al. 2019)
- FAO (Tubiello et al., 2013; 2019)

Full references provided in Saunois et al. 2020, ESSD
Scientific contributors: Marielle Saunois France | Ann R. Stavert Australia | Ben Poulter USA | Philippe Bousquet France | Josep G. Canadell Australia | Robert B. Jackson USA | Peter A. Raymond USA | Edward J. Dlugokencky USA | Sander Houweling The Netherlands | Prabir K. Patra Japan | Philippe Ciais France | Vivek K. Arora Canada | David Bastviken Sweden | Peter Bergamaschi Italy | Donald R. Blake USA | Gordon Brailsford New Zealand | Lori Bruhwiler USA | Kimberly M. Carlson USA | Mark Carrol USA | Simona Castaldi Italy | Naveen Chandra Japan | Cyril Crevoisier France | Patrick Crill Sweden | Kristofer Covey USA | Charles Curry Canada | Giuseppe Etiope Italy | Christian Frankenberg USA | Nicola Gedney UK | Michaela I. Hegglin UK | Lena Höglund-Isaksson Austria | Gustaf Hugelius Sweden | Misa Ishizawa Japan | Akihiko Ito Japan | Greet Janssens-Maenhout Italy | Katherine M. Jensen USA | Fortunat Joos Switzerland | Thomas Kleinen Germany | Paul Krummel Australia | Ray Langenfelds Australia | Goulven G. Laruelle Belgium | Licheng Liu USA | Toshinobu Machida Japan | Shamil Maksyutov Japan | Kyle C. McDonald USA | Joe McNorton UK | Paul A. Miller Sweden | Joe R. Melton Canada | Isamu Morino Japan | Jurek Müller Switzerland | Fabiola Murguia-Flores UK | Vaishali Naik USA | Yosuke Niwa Japan | Sergio Noce Italy | Simon O’Doherty UK | Robert J. Parker UK | Changhui Peng Canada | Shushi Peng China | Glen P. Peters Norway | Catherine Prigent France | Ronald Prinn USA | Michel Ramonet France | Pierre Régnier Belgium | William J. Riley USA | Judith A. Rosentreter Australia | Arjo Segers The Netherlands | Isobel J. Simpson USA | Hao Shi USA | Steven J. Smith USA | Paul Steele Australia | Brett F. Thornton Sweden | Hanqin Tian USA | Yasunori Tohjima Japan | Francesco N. Tubiello Italy | Aki Tsuruta Finland | Nicolas Violy France | Apostolos Voulgarakis UK | Thomas S. Weber USA | Michiel van Weele The Netherlands | Guido van der Werf The Netherlands | Ray Weiss USA | Doug Worthy Canada | Debra B. Wunch Canada | Yi Yin USA | Yukio Yoshida Japan | Wenxin Zhang Sweden | Zhen Zhang USA | Yuanhong Zhao France | Bo Zheng France | Qing Zhu USA | Qianlai Zhuang USA | Yuanhong Zhao France | Bo Zheng France | Qing Zhu USA | Qianlai Zhuang USA | Data visualisation support at LSCE: Patrick Bröckmann France | Cathy Nangini Canada
The Global Methane Budget 2000–2017

Marielle Saunois1, Ann R. Stavert1, Ben Poulter3, Philippe Bousquet4, Josep G. Canadell1, Robert B. Jackson1, Peter A. Raymond5, Edward J. Dlugokencky6, Sander Houweling7, Prabir K. Patra1, Philippe Claeys1, Virek K. Aroya1, David Bastviken4, Peter Bergamaschi1, Donald R. Blake1, Gordon Brailsford7, Lori Brunskill1, Kimberly M. Carlson5,2, Mark Carroll3, Simona Castaldi4,5,10, Navene Chandra1, Cyril Cynolter4, Patrick M. Crill5, Kristofer Covey1, Charles L. Curry6,2, Giuseppe Etiope4,10, Christian Frankenberg7,8, Nicola Gedney8,9, Michaela I. Heggie7, Lena Highwood-Iajskson1, Gustaf Hugelius5, Misa Ishizawa3, Akiko Ita5, Greet Janssens-Maenhout1, Katherine M. Jensen1, Fortunat Joos3, Thomas Kleinen8,9, Paul B. Krummel9, Ray L. Langenfelds10, Gwenlly G. Laruelle1, Licheng Liu7, Toshinobu Machida11, Shamim Maksyutov10, Kyle C. McDonald12, Joe McNorton12, Paul A. Miller10, Joe R. Molina10, Isamu Morino12, Jurek Müller13, Fabiola Murugia-Flores8, Vaishali Naik1, Yoneko Niwa13, Sergio Noe12, Simon O’Doherty12, Robert J. Parker1, Changheai Peng13, Shuhei Peng13, Glenn P. Peters13, Catherine Prigent14, Ronald Prim0, Michel Ramonet15, Pierre Regnier13, William J. Riley13, Judith A. Rosenreiter15, Arjo Segers13, Isabel J. Simpson15, Hao Shi8, Steven J. Smith16,17, L. Paul Steele1, Brett E. Thornton1, Hanqing Tian13, Yasumori Tohjima11, Francesco N. Tufillo10, Akiko Tsuruta10, Nicolas Vosy13, Apostolos Voulgarakis10,18, Thomas S. Weber13, Michiel van Weele19, Guido V. van der Werf1, Ray E. Weiss1, Doug Worthy1,2, Debra Wunch2, Yi Yie2, Yukio Yoshida1, Wensun Zhang1, Zhou Zhang1, Yuanchong Zhuo, Bo Zheng, Qiang Zhu1, Qian Zhu2, and Qianlai Zhang2

Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources

R B Jackson1, M Saunois1, P Bousquet1, J G Canadell1, B Poulter3, A R Stavert1, P Bergamaschi1, Y Niwa1, A Segers1 and A Tsuruta1

Environmental Research Letters

Perspective

Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources

R B Jackson1, M Saunois1, P Bousquet1, J G Canadell1, B Poulter3, A R Stavert1, P Bergamaschi1, Y Niwa1, A Segers1 and A Tsuruta1

1 Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305-2210, United States of America
2 Laboratoire des Sciences du Climat et de l’Environnement, LSCC-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
3 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia
4 NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, United States of America
5 Global Carbon Project, CSIRO Oceans and Atmosphere, Armidale, NSW 2351, Australia
6 European Commission Joint Research Centre, Ispra (VA), Italy
7 Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
8 Meteorological Research Institute, Tsukuba, Ibaraki 305-0002, Japan
9 TNO, Dept. of Climate Air & Sustainability, NL-3908 TA Utrecht, The Netherlands
10 Finnish Meteorological Institute, FI-00181 Helsinki, Finland

E-mail: rob.jackson@stanford.edu

https://doi.org/10.5194/essd-12-1561-2020

https://doi.org/10.1088/1748-9326/ab9ed2
Data access

http://www.globalcarbonproject.org/methanebudget

Global Methane Budget Website
http://www.globalcarbonproject.org/methanebudget

<table>
<thead>
<tr>
<th>Executive Committee</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marielle Saunois</td>
<td>marielle.saunois@lsce.ipsl.fr</td>
</tr>
<tr>
<td>Philippe Bousquet</td>
<td>philippe.bousquet@lsce.ipsl.fr</td>
</tr>
<tr>
<td>Rob Jackson</td>
<td>rob.jackson@stanford.edu</td>
</tr>
<tr>
<td>Ben Poulter</td>
<td>benjamin.poulter@nasa.gov</td>
</tr>
<tr>
<td>Pep Canadell</td>
<td>pep.canadell@csiro.au</td>
</tr>
</tbody>
</table>
All data are shown in teragrams CH$_4$ (TgCH$_4$) for emissions and sinks and parts per billion (ppb) for atmospheric concentrations.

1 teragram (Tg) = 1 million tonnes = 1×10^{12}g

2.78 Tg CH$_4$ per ppb

Disclaimer

The Global Methane Budget and the information presented here are intended for those interested in learning about the carbon cycle, and how human activities are changing it. The information contained herein is provided as a public service, with the understanding that the Global Carbon Project team make no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability of the information.
Context & Methods
The methane context

- After carbon dioxide (CO$_2$), methane (CH$_4$) is the most important greenhouse gas contributing to human-induced climate change.

- For a time horizon of 100 years, CH$_4$ has a Global Warming Potential 28 times larger than CO$_2$.

- Methane is responsible for 23% of the global warming produced by CO$_2$, CH$_4$ and N$_2$O.

- The concentration of CH$_4$ in the atmosphere is 150% above pre-industrial levels (cf. 1750).

- The atmospheric lifetime of CH$_4$ is 9±2 years, making it a good target for climate change mitigation.

- Methane also contributes to tropospheric production of ozone, a pollutant that harms human health, foof production and ecosystems.

- Methane also leads to production of water vapor in the stratosphere by chemical reactions, enhancing global warming.

An ensemble of tools and data to estimate the global methane budget

Bottom-up budget
- Atmospheric observations
- Emission inventories
- Biogeochemistry models & data-driven methods
- Methane sinks
- Inverse models

Top-down budget
- Ground-based data from observation networks (AGAGE, CSIRO, NOAA, UCI, LSCE, others).
- Satellite data (GOSAT)
- Agriculture and waste related emissions, fossil fuel emissions (EDGARv4.3.2, CEDS, USEPA, GAINS, FAO).
- Fire emissions (GFED4s, FINN, GFAS, QFED, FAO).
- Biofuel estimates
- Ensemble of 13 wetland models
- Model for termites emissions
- Other sources from literature (inland water, geological, wild animal...)
- OH sink from CCMI experiment.
- Soil uptake & chlorine sink taken from the literature
- Suite of 9 atmospheric inversion models (CTE-CH₄, GELCA, PYVAR-LMDz, MIRO4-ACTM, NICAM-TM, NIES-TM FLEXPART, TM5-CAMS, TM5-4DVAR-NIES, TOMCAT).
- Ensemble of 22 inversions (diff. obs & setup)
CH$_4$ Atmospheric Growth Rate 2000-2017

- Slowdown of atmospheric growth rate before 2006
- Resumed increase after 2006

Source: Saunois et al. 2020, ESSD (Fig. 1)
The projections represented here correspond to RCPs defined for IPCC 5th Assessment Report.

- Methane concentrations rose faster in 2014, 2015 and 2019 with more than 10 ppb/yr.
- Since 2013, the atmospheric increase is approaching the warmest scenario of IPCC AR5 report.
Anthropogenic emissions:
• All inventories, except EPA, infer an increase in emissions as fast as the warmest scenarios between 2005 and 2017.
Atmospheric concentrations:
- Atmospheric observations (black line) fall between the estimates of the different scenarios

=> Monitoring of future years trends in emissions and concentration is critical to assess mitigation policy efficiency

Methane Concentrations & Socioeconomic Pathways (SSPs)

The projections represented here correspond to SSPs defined for IPCC 6th Assessment Report

Forcing target & scenario temperature range in 2100
- Median temperatures using MAGICC (ECS=3°C)
- Baseline (3.0–5.1°C)
- 6.0W/m² (3.2–3.3°C)
- 4.5W/m² (2.5–2.7°C)
- 3.4W/m² (2.1–2.3°C)
- 2.6W/m² (1.7–1.8°C)
- 1.9W/m² (1.3–1.4°C)

Source: Saunois et al. 2020, ESSD (Fig. 2)
Decadal emissions & sinks
Global Methane Budget 2008-2017

Source: Saunois et al. 2020, ESSD (Fig. 6)
Global Methane Budget 2017

GlobaL MethaNe BUDgET 2017

TOTAL EMISSIONS

Fossil fuel production and use: 108 (91-121)
Agriculture and waste: 227 (205-246)
Biomass and biofuel burning: 28 (25-32)
Wetlands: 194 (155-217)
Other natural emissions: 39 (21-50)

TOTAL SINKS

Sink from chemical reactions in the atmosphere: 531 (502-540)
Sink in soils: 40 (37-47)

Total Emissions

592 (572-614)

Total Sinks

571 (540-585)

Atmospheric CH₄ Growth Rate

+16.8% (14.0 to 19.5)

Source: Jackson et al. 2020, ERL (Fig. 1)
Mapping of the largest methane source categories

- Wetlands
- Fossil fuels
- Agriculture & Waste
- Biom. & biof. burning

Source: Saunois et al. 2020, ESSD (Fig 3);
• Wetlands are the largest natural global CH$_4$ source

• Vegetated wetland emissions are estimated using an ensemble of land-surface models constrained with remote-sensing based surface water and inventory based vegetated wetlands

• The resulting global flux range for natural wetland emissions is 102–182 TgCH$_4$/yr for the decade of 2008–2017, with an average of 149 TgCH$_4$/yr.
Mapping other natural sources

Other natural sources not mapped here are inland water emissions, permafrost and hydrates.

Source: Saunois et al. 2020 (Fig 4)
Methane Sinks (2000s)

Source: Saunois et al., 2020
Global Methane Emissions 2008-2017

Bottom-up budget

- **Natural wetlands**
 - Rice
 - Enteric ferm & manure
 - Landfills & waste

- **Agriculture & waste**
 - Coal
 - Gas & oil
 - Industry and transport

- **Fossil fuel**
 - Inland waters
 - Geological
 - Termites
 - Oceans
 - Wild animals

- **Biomass/biofuel burning**
 - Permafrost

- **Other natural emissions**

Top-down budget

- **Atmospheric inversions**

Mean [min-max range %]

- Rice
 - 209 [70%] 222 [70%]
- Enteric ferm & manure
 - 45 [100%] 30 [100%]
- Landfills & waste
 - 111 [10%] 7 [250%]
- Coal
 - 128 [30%] 30 [30%]
- Gas & oil
 - 181 [20%] 111 [50%]
- Industry and transport
 - 206 [15%] 30 [40%]
- Inland waters
 - 149 [50%] 65 [15%]
- Geological
 - 181 [20%] 42 [80%]
- Termites
 - 111 [50%] 80 [30%]
- Oceans
 - 222 [70%] 7 [250%]
- Wild animals
 - 128 [15%] 2 [100%]
- Permafrost
 - 217 [15%] 1 [100%]

Mean [uncertainty = min-max range %]

- Rice
 - 209 [70%] 222 [70%]
- Enteric ferm & manure
 - 45 [100%] 30 [100%]
- Landfills & waste
 - 111 [10%] 7 [250%]
- Coal
 - 128 [30%] 30 [30%]
- Gas & oil
 - 181 [20%] 111 [50%]
- Industry and transport
 - 206 [15%] 30 [40%]
- Inland waters
 - 149 [50%] 65 [15%]
- Geological
 - 181 [20%] 42 [80%]
- Termites
 - 111 [50%] 80 [30%]
- Oceans
 - 222 [70%] 7 [250%]
- Wild animals
 - 128 [15%] 2 [100%]
- Permafrost
 - 217 [15%] 1 [100%]

Mean [min-max range %]

- Rice
 - 209 [70%] 222 [70%]
- Enteric ferm & manure
 - 45 [100%] 30 [100%]
- Landfills & waste
 - 111 [10%] 7 [250%]
- Coal
 - 128 [30%] 30 [30%]
- Gas & oil
 - 181 [20%] 111 [50%]
- Industry and transport
 - 206 [15%] 30 [40%]
- Inland waters
 - 149 [50%] 65 [15%]
- Geological
 - 181 [20%] 42 [80%]
- Termites
 - 111 [50%] 80 [30%]
- Oceans
 - 222 [70%] 7 [250%]
- Wild animals
 - 128 [15%] 2 [100%]
- Permafrost
 - 217 [15%] 1 [100%]

Source: Saunois et al. 2020, ESSD

Top-down budget

- **Atmospheric inversions**
 - 576 TgCH$_4$/yr [550-594]
Global emissions:
576 TgCH$_4$/yr [550-594] for TD
737 TgCH$_4$/yr [594-881] for BU

TD and BU estimates generally agree for agricultural emissions

Estimated fossil fuel emissions are lower for TD than for BU approaches

Estimated wetland emissions are higher for TD than for BU approaches

Large discrepancy between TD and BU estimates for freshwaters and natural geological sources ("other natural sources")

Source: Saunois et al. 2020, ESSD (Fig 5)
Methane emissions by latitudinal bands 2008-2017

Contribution to global emissions

- **Tropics (< 30°N):** 64%
- **Mid-latitudes (30°N-60°N):** 32%
- **Northern high latitudes (60°N-90°N):** 4%

Source: Saunois et al. 2020, ESSD (Fig 7)
Regional Methane Sources (2017)

- 64% of global methane emissions come mostly from tropical sources
- Anthropogenic sources are responsible for about 60% of global emissions.
- Largest emissions in South America, Africa, South-East Asia and China (50% of global emissions)
- Dominance of wetland emissions in the tropics and boreal regions
- Dominance of agriculture & waste in Asia
- Balance between agriculture & waste and fossil fuels at mid-latitudes

Source: Jackson et al. 2020 ERL (Fig 2)
An interactive view of the methane budget

Source: Carbon Atlas
www.globalcarbonatlas.org
Emission changes
Changes in Methane Sources

• About 50 TgCH$_4}$/yr emissions increase between 2000-2006 and 2017
• Increase mainly from the Tropics (about 30 TgCH$_4}$/yr), followed by mid-latitudes (15-20 TgCH$_4}$/yr)
• Regional contributions from Africa and Middle East, China and rest of Asia
• Increase in North America driven by the increase from USA
• Decrease in Europe

Source: Jackson et al. 2020 ERL (Fig 2)
Changes in Methane Sources

Emission changes between 2000-2006 and 2017

Top-down, left; Bottom-up, right

- Global increase mainly from anthropogenic sources equally between Agriculture and Waste and Fossil Fuel
- Fossil Fuel emissions increased in China, North America (USA), Africa, and Asia
- Agriculture and Waste emissions increased mostly in Africa, Southern Asia and South America
- Emissions decreased in Europe from both Fossil Fuel and Agriculture and Waste sources

Source: Jackson et al. 2020 ERL (Fig 2)
Sink changes
• Hydroxyl radical, OH is the main oxidant of CH$_4$, responsible of about 90% of methane removal in the atmosphere.

• Two approaches derive estimates of OH quantity in the atmosphere:
 1. Chemistry climate models that includes hundreds chemical reactions between numerous species
 2. Box-modeling based on methyl-chloroform (MCF) observations

• Both approaches derive a 10-15% uncertainty on global OH mean concentrations.
OH inter-annual variability and trend

- Chemistry climate models derive a null to positive trend in OH over 2000-2017
- MCF-based box modelling suggest a positive trend in OH over 1997-2005 followed by a negative trend from 2005 onward

⇒ High uncertainty remains on OH trend and interannual variability

Source: Zhao et al. 2019
Source: Ganesan et al. 2020
Methane emissions derived by top-down systems are dependent of the OH sink prescribed.

The range derived by an ensemble of top-down approaches in Saunois et al. (2020) is narrower than the one derived by a single top-down system when testing several OH distributions (from chemistry climate models).

The uncertainty in global total methane emissions is probably underestimated in Saunois et al. (2020).
Impact of OH change in the methane sink

- OH increase before 2007 could explain part of the stabilization of atmospheric methane

- Stagnation or decrease in OH radicals can contribute to explain:
 - the renewed increase of atmospheric methane since 2007
 - The lighter atmosphere in 13C isotope since 2007

Source: Dalsoren et al., 2016
Since 2007: a sustained atmospheric CH$_4$ growth and δ^{13}C-CH$_4$ decrease

- Need to understand which changes in emissions are responsible for both increasing atmospheric methane and decreasing δ^{13}C-CH$_4$ since 2007

1867 ppb reached in 2019!

CH$_4$ Growth rates:

- 2014: 12.7±0.5 ppb yr$^{-1}$
- 2015: 10.1±0.7 ppb yr$^{-1}$
- 2016: 7.0±0.6 ppb yr$^{-1}$
- 2017: 7.0±0.9 ppb yr$^{-1}$
- 2018: 8.5±0.6 ppb yr$^{-1}$
- 2019: 10.7±0.6 ppb yr$^{-1}$

δ^{13}C-CH$_4$ decreased by -0.2‰ in 10 years

Source: Nisbet et al., 2019
• Atmospheric CH$_4$ concentrations are rising faster over the last decades than in the 2000s. Since 2013, the trend in atmospheric methane concentrations is closer to the most greenhouse-gas-intensive scenarios of IPCC AR5 than scenarios integrating mitigation policies.

• Anthropogenic sources are responsible for all or most of the recent rapid rise in global CH$_4$ concentrations, equally from agriculture and fossil fuels sources. Tropical regions play the most significant role as contributors to the atmospheric growth.

• The role of methane sinks has to be further explored as a slower destruction of methane by OH radicals in the atmosphere could have also contributed to the observed atmospheric changes of the past decade. However high uncertainties on OH burden and trend prevent any solid conclusions.

• Methane global emissions were 576 TgCH$_4$/yr [550-594] for 2008-2017 as inferred by an ensemble of atmospheric inversions (top-down approach) using an atmospheric constraint.

• Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly complementary to CO$_2$ mitigation.

• Emission estimates from inventories/models (bottom-up approach) show larger global totals because of larger natural emissions. Improved emission inventories and estimates from inland water emissions are still needed.
Explore GHG emissions globally and by country and download data and illustrations. Also explore ‘Outreach’ and ‘Research’.

www.globalcarbonatlas.org
The methane budget, using data from Saunois 2020, can be visualized in 3D at: https://svs.gsfc.nasa.gov/4799
The work presented in the Global Methane Budget 2020 has been possible thanks to the contributions of hundreds of people involved in observational networks, modeling, and synthesis efforts. Not all of them are individually acknowledged in this presentation for reasons of space (see slide 3 for those individuals directly involved).

Additional acknowledgement is owed to those institutions and agencies that provide support for individuals and funding that enable the collaborative effort of bringing all components together in the carbon budget effort.

We also thank the sponsors of the GCP and GCP support/liaison offices
Attribution 4.0 International (CC BY 4.0)

This deed highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. You should carefully review all of the terms and conditions of the actual license before using the licensed material. Creative Commons is not a law firm and does not provide legal services. Distributing, displaying, or linking to this deed or the license that it summarizes does not create a lawyer-client or any other relationship. This is a human-readable summary of (and not a substitute for) the license.

You are free to:

- **Share** — copy and redistribute the material in any medium or format
- **Adapt** — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

- **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. What does "Attribute this work" mean? The page you came from contained embedded licensing metadata, including how the creator wishes to be attributed for re-use. You can use the HTML here to cite the work. Doing so will also include metadata on your page so that others can find the original work as well.

- **No additional restrictions** — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
References used in this presentation

- Dalsoren et al. (2016): Atmospheric methane evolution the last 40 years, Atmos. Chem. Phys., 16,3099-3126, http://dx.doi.org/10.5094 acp-16-3099-2016
- Zhao Y. et al. (2020): Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1208, accepted, 2020.