GLOBAL CARBON PROJECT

Global Methane Budget 2020

The Global Methane budget for 2000-2017

The GCP is a Global futureart **Research Project of**

and a Research Research Innovation Sustainabil

Published on 15 July 2020 PowerPoint version 1.0 (released 15 July 2020)

The work presented here has been possible thanks to the enormous observational and modeling efforts of the institutions and networks below

Atmospheric CH₄ datasets

- NOAA/ESRL (Dlugokencky et al., 2011)
- AGAGE (Rigby et al., 2008)
- CSIRO (Francey et al., 1999)
- UCI (Simpson et al., 2012)

Top-down atmospheric inversions

- CarbonTracker-Europe CH₄ (Tsuruta et al., 2017)
- GELCA (Ishizawa et al., 2016)
- LMDz-SACS- PYVAR (Zheng et al., 2018a; 2018b;Yin et al., 2015)
- MIROC4-ACTM (Patra et al., 2016; 2018)
- NICAM-TM (Niwa et al., 2017b;2017b)
- TM5-4DVAR (Houweling et al., 2014)
- NIES-TM- Flexpart (Maksyutov et al., 2020; Wang et al., 2019a)
- TM5-CAMS (Pandey et al., 2016; Segers and Houwelling, 2018)
- TM5-4DVAR (Bergamaschi et al., 2013;2018)

Bottom-up modeling

- Description of models contributing to the Chemistry Climate Model Initiative (CCMI) (Morgenstern et al., 2017)
- Description of OH fields from CCMI (Zhao et al., 2019)

Bottom-up studies data and modeling

- CLASS-CTEM (Arora et al. 2018; Melton and Arora, 2016)
- DLEM (Tian et al., 2010;2015)
- ELM (Riley et al., 2011)
- JSBACH (Kleinen et al., 2019)
- JULES (Hayman et al., 2014)
- LPJ-GUESS (McGuire et al., 2012)
- LPJ-MPI (Kleinen et al., 2012)
- LPJ-wsl (Zhang et al., 2016)
- LPX-Bern (Spahni et al., 2011)
- ORCHIDEE (Ringeval et al., 2011)
- TEM-MDM (Zhuang et al., 2004)
- TRIPLEX-GHG (Zhu et al., 2104; 2015)
- VISIT (Ito ad Inatomi, 2012)
- FINNv1.5 (Wiedinmyer et al., 2011)
- GFASv1.3 (Kaiser et al., 2012)
- GFEDv4.1s (Giglio et al., 2013)
- QFEDv2.5 (Darmenov and da Silva, 2015)
- CEDS (Hoesly et al., 2018)
- IIASA GAINS ECLIPSEv6 (Höglund-Isaksonn, 2012)
- EPA, 2012
- EDGARv4..3.2FT (Janssens-Maenhout et al. 2019)
- FAO (Tubiello et al., 2013; 2019)

Full references provided in Saunois et al. 2020, ESSD

Scientific contributors : Marielle Saunois France | Ann R. Stavert Australia | Ben Poulter USA | Philippe Bousquet France | Josep G. Canadell Australia | Robert B. Jackson USA | Peter A. Raymond USA | Edward J. Dlugokencky USA | Sander Houweling The Netherlands | Prabir K. Patra Japan | Philippe Ciais France | Vivek K. Arora Canada | David Bastviken Sweden | Peter Bergamaschi Italy | Donald R. Blake USA | Gordon Brailsford New Zealand | Lori Bruhwiler USA | Kimberly M. Carlson USA | Mark Carrol USA | Simona Castaldi Italy | Naveen Chandra Japan | Cyril Crevoisier France | Patrick Crill Sweden | Kristofer Covey USA | Charles Curry Canada | Giuseppe Etiope Italy | Christian Frankenberg USA | Nicola Gedney UK | Michaela I. Hegglin UK | Lena Höglund-Isaksson Austria | Gustaf Hugelius Sweden | Misa Ishizawa Japan | Akihiko Ito Japan | Greet Janssens-Maenhout Italy | Katherine M. Jensen USA | Fortunat Joos Switzerland | Thomas Kleinen Germany | Paul Krummel Australia | Ray Langenfelds Australia | Goulven G. Laruelle Belgium | Licheng Liu USA | Toshinobu Machida Japan | Shamil Maksyutov Japan | Kyle C. McDonald USA | Joe Mc Norton UK | Paul A. Miller Sweden | Joe R. Melton Canada | Isamu Morino Japan | Jurek Müller Swizterland | Fabiola Murguia-Flores UK | Vaishali Naik USA | Yosuke Niwa Japan | Sergio Noce Italy | Simon O'Doherty UK | Robert J. Parker UK | Changhui Peng Canada | Shushi Peng China | Glen P. Peters Norway | Catherine Prigent France | Ronald Prinn USA | Michel Ramonet France | Pierre Régnier Belgium | William J. Riley USA | Judith A. Rosentreter Australia | Arjo Segers The Netherlands | Isobel J. Simpson USA | Hao Shi USA | Steven J. Smith USA | Paul Steele Australia | Brett F. Thornton Sweden | Hangin Tian USA | Yasunori Tohjima Japan | Francesco N. Tubiello Italy | Aki Tsuruta Finland | Nicolas Viovy France | Apostolos Voulgarakis UK | Thomas S. Weber USA | Michiel van Weele The Netherlands | Guido van der Werf The Netherlands | Ray Weiss USA | Doug Worthy Canada | Debra B. Wunch Canada | Yi Yin USA | Yukio Yoshida Japan | Wenxin Zhang Sweden | Zhen Zhang USA | Yuanhong Zhao France | Bo Zheng France | Qing Zhu USA | Qiuan Zhu China | Qianlai Zhuang USA |

Data visualisation support at LSCE : Patrick Bröckmann France | Cathy Nangini Canada

GLOBAL

CARBON

Earth Syst. Sci. Data, 12, 1–63, 2020 https://doi.org/10.5194/essd-12-1-2020 @ Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Earth System Science Data

x

The Global Methane Budget 2000–2017

Marielle Saunois¹, Ann R. Stavert², Ben Poulter³, Philippe Bousquet¹, Josep G. Canadell², Robert B. Jackson⁴, Peter A. Raymond⁵, Edward J. Dlugokencky⁶, Sander Houweling^{7,8}, Prabir K. Patra^{9,10}, Philippe Ciais¹, Vivek K. Arora¹¹, David Bastviken¹², Peter Bergamaschi¹³, Donald R. Blake¹⁴, Gordon Brailsford¹⁵, Lori Bruhwiler⁶, Kimberly M. Carlson^{16,17}, Mark Carrol⁷⁰, Simona Castaldi^{18,19,20}, Naveen Chandra⁹, Cvril Crevoisier²¹, Patrick M. Crill²², Kristofer Covev²³, Charles L. Curry^{24,71}, Giuseppe Etiope^{25,26}, Christian Frankenberg^{27,28}, Nicola Gedney²⁹, Michaela I. Hegglin³⁰, Lena Höglund-Isaksson³¹, Gustaf Hugelius³², Misa Ishizawa³³, Akihiko Ito³³, Greet Janssens-Maenhout¹³, Katherine M. Jensen³⁴, Fortunat Joos³⁵, Thomas Kleinen³⁶, Paul B. Krummel³⁷, Ray L. Langenfelds³⁷, Goulven G. Laruelle³⁸, Licheng Liu³⁹, Toshinobu Machida³³, Shamil Maksyutov³³, Kyle C. McDonald³⁴, Joe McNorton⁴⁰, Paul A. Miller⁴¹, Joe R. Melton⁴², Isamu Morino³³, Jurek Müller³⁵, Fabiola Murguia-Flores⁴³, Vaishali Naik⁴⁴, Yosuke Niwa^{33,45}, Sergio Noce²⁰, Simon O'Doherty⁴⁶, Robert J. Parker⁴⁷, Changhui Peng⁴⁸, Shushi Peng⁴⁹, Glen P. Peters⁵⁰, Catherine Prigent⁵¹, Ronald Prinn⁵², Michel Ramonet¹, Pierre Regnier³⁸ William J. Riley⁵³, Judith A. Rosentreter⁵⁴, Arjo Segers⁵⁵, Isobel J. Simpson¹⁴, Hao Shi⁵⁶, Steven J. Smith^{57,58}, L. Paul Steele³⁷, Brett F. Thornton²², Hangin Tian⁵⁶, Yasunori Tohjima⁷², Francesco N. Tubiello⁵⁹, Aki Tsuruta⁶⁰, Nicolas Viovy¹, Apostolos Voulgarakis^{61,62}, Thomas S. Weber⁶³, Michiel van Weele⁶⁴, Guido R. van der Werf⁸, Ray F. Weiss⁶⁵, Doug Worthv⁶⁶, Debra Wunch⁶⁷, Yi Yin^{1,27}, Yukio Yoshida³³, Wenxin Zhang⁴¹, Zhen Zhang⁶⁸, Yuanhong Zhao¹, Bo Zheng¹, Qing Zhu⁵³, Oiuan Zhu⁶⁹, and Oianlai Zhuang³⁹

https://doi.org/10.5194/essd-12-1561-2020

Publishing	Environ. Res. Lett. 0 (2020) xxxxxx https://doi.org/10.1088/1748	-9326/ab9ed2	
	Environmental Research Letters		
CrossMark	PERSPECTIVE		
0	Increasing anthropogenic methane emissions arise equally	from	
PEN ACCESS	agricultural and fossil fuel sources		
CEIVED May 2020	R B Jackson 🕘, M Saunois", P Bousquet', J G Canadell', B Poulter', A R Stavert', P Bergamaschi'	, Y Niwa ^{7,8} ,	
VISED June 2020	A Segers ⁹ and A Tsuruta ¹⁰		
CEPTED FOR PUBLICATION June 2020	¹ Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanfor Stanford, CA 94305-2210, United States of America ² Laboratorie des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-	rd University, Saclay, 91191	
XX XXXX	Gif-sur-Yvette, France		
	 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia ⁴ NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771. United States of America 		
riginal content from is work may be used ader the terms of the reative Commons tribution 4.0 licence.	⁵ Global Carbon Project, CSIRO Oceans and Atmosphere, Aspendale, VIC 3195, Australia ⁶ European Commission Joint Research Centre, 21027 Ispra (Va), Italy ⁷ Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Ja ⁸ Meuropean Commission Research Meuropean Commission Commental Studies, Tsukuba, Ibaraki 305-8506, Ja	apan	
ny further distribution	⁹ TNO. Dept. of Climate Air & Sustainability. NL-3508-TA Utrecht. The Netherlands		
this work must	¹⁰ Finnish Meteorological Institute, FI-00101 Helsinki, Finland		
e author(s) and the title the work, journal tation and DOI.	le E-mail: rob.jackson@stanford.edu		

https://doi.org/10.1088/1748-9326/ab9ed2

Data access

Global Methane Budget Website <u>http://www.globalcarbonproject.org/methanebudget</u>

Executive Committee	Email	
Marielle Saunois	marielle.saunois@lsce.ipsl.fr	
Philippe Bousquet	philippe.bousquet@lsce.ipsl.fr	
Rob Jackson	rob.jackson@stanford.edu	
Ben Poulter	benjamin.poulter@nasa.gov	
Pep Canadell	pep.canadell@csiro.au	

All data are shown in

teragrams CH_4 (Tg CH_4) for emissions and sinks parts per billion (ppb) for atmospheric concentrations

1 teragram (Tg) = 1 million tonnes = 1×10^{12} g 2.78 Tg CH₄ per ppb

Disclaimer

The Global Methane Budget and the information presented here are intended for those interested in learning about the carbon cycle, and how human activities are changing it. The information contained herein is provided as a public service, with the understanding that the Global Carbon Project team make no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability of the information.

Context & Methods

- After carbon dioxide (CO₂), methane (CH₄) is the most important greenhouse gas contributing to human-induced climate change.
- For a time horizon of 100 years, CH₄ has a Global Warming Potential 28 times larger than CO₂.
- Methane is responsible for 23% of the global warming produced by CO₂, CH₄ and N₂O.
- The concentration of CH_4 in the atmosphere is 150% above pre-industrial levels (cf. 1750).
- The atmospheric lifetime of CH₄ is 9±2 years, making it a good target for climate change mitigation

- Methane also contributes to tropospheric production of ozone, a pollutant that harms human health, foof production and ecosystems.
- Methane also leads to production of water vapor in the stratosphere by chemical reactions, enhancing global warming.

An ensemble of tools and data to estimate the global methane budget

GLOBAL

CARBON

CH₄ Atmospheric Growth Rate 2000-2017

GLOBAL

CARBON

- Slowdown of atmospheric growth rate before 2006
- Resumed increase after 2006

The projections represented here correspond to RCPs defined for IPCC 5th Assessment Report

Observations: Globally averaged marine surface annual mean data from NOAA

- Methane concentrations rose faster in 2014, 2015 and 2019 with more than 10 ppb/yr.
- Since 2013, the atmospheric increase is approaching the warmest scenario of IPCC AR5 report

The projections represented here correspond to SSPs defined for IPCC 6th Assessment Report

Anthropogenic emissions:

CARBON

Baseline (3.0-5.1°C)

6.0W/m² (3.2-3.3°C)

4.5W/m² (2.5–2.7°C) 3.4W/m² (2.1–2.3°C)

2.6W/m² (1.7–1.8°C) 1.9W/m² (1.3–1.4°C)

GLOBAL

 All inventories, except EPA, infers an increase in emissions as fast as the warmest scenarios between 2005 and 2017.

Forcing target & scenario temperature range in 2100 Median temperatures using MAGICC (ECS=3°C)

Atmospheric observations

inventories

Source: Saunois et al. 2020, ESSD (Fig. 2)

Methane Concentrations & Socioeconomic Pathways (SSPs)

The projections represented here correspond to SSPs defined for IPCC 6th Assessment Report

Atmospheric concentrations:

GLOBAL

- Atmospheric observations (black line) fall between the estimates of the different scenarios
- => Monitoring of future years trends in emissions and concentration is critical to assess mitigation policy efficiency

Atmospheric observations

inventories

Source: Saunois et al. 2020, ESSD (Fig. 2)

Decadal emissions & sinks

Source: Saunois et al. 2020, ESSD (Fig. 6)

Source: Jackson et al. 2020, ERL (Fig. 1)

Mapping of the largest methane source categories

GLOBAL

CARBON

Bottom-up budget

- Wetlands are the largest natural global CH₄ source
- Vegetated wetland emissions are estimated using an ensemble of land-surface models constrained with remote-sensing based surface water and inventory based vegetated wetlands
- The resulting global flux range for natural wetland emissions is 102–182 TgCH₄/yr for the decade of 2008–2017, with an average of 149 TgCH4/yr.

Biogeochemistry models & datadriven methods

CARBON Mapping other natural sources

GLOBAL

Bottom-up budget

Other natural sources not mapped here are inland water emissions, permafrost and hydrates

Biogeochemistry models & datadriven methods

Source: Saunois et al. 2020 (Fig 4)

Global Methane Emissions 2008-2017

GLOBAL CARBON Global Methane Emissions 2008-2017

- Global emissions: 576 TgCH₄/yr [550-594] for TD 737 TgCH₄/yr [594-881] for BU
- TD and BU estimates generally agree for agricultural emissions
- Estimated fossil fuel emissions are lower for TD than for BU approaches
- Estimated wetland emissions are higher for TD than for BU approaches
- Large discrepancy between TD and BU estimates for freshwaters and natural geological sources ("other natural sources")

inventories

Biogeochemistry

models & data-

driven methods

Source: Saunois et al. 2020, ESSD (Fig 5)

GLOBAL CARBON Methane emissions by latitudinal bands 2008-2017

Source: Saunois et al. 2020, ESSD (Fig 7)

Emission inventories Biogeochemistry models & datadriven methods

Inverse models

- 64% of global methane emissions come mostly from tropical sources
- Anthropogenic sources are responsible for about 60% of global emissions.
- Largest emissions in South America, Africa, South-East Asia and China (50% of global emissions)
- Dominance of wetland emissions in the tropics and boreal regions
- Dominance of agriculture & waste in Asia
- Balance between agriculture & waste and fossil fuels at mid-latitudes

Source: Jackson et al. 2020 ERL (Fig 2)

An interactive view of the methane budget CARBON PROJECT

GLOBAL

Source: Carbon Atlas

Global Methane Budget 2000-2017; regional & natural and anthropomorphic source estimates

driven methods

Methane source estimates over the period 2008-2017 from Top-Down (left) and Bottom-Up (right) approaches showing contributions (mean [min, max]) from 18 continental regions with respect to five broad source categories (Fossil fuel production & use, Agriculture & Waste, Biofuel & Biomass burning, Wetlands, and Other Natural sources). Total source estimates from the Bottom-Up approach are further classed into finer subcategories. Data source: Saunois et al. (2019).

inventories

Inverse models

Emission changes

- About 50 TgCH₄/yr emissions increase between 2000-2006 and 2017
- Increase mainly from the Tropics (about 30 TgCH₄/yr), followed by mid-latitudes (15-20 TgCH₄/yr)
- Regional contributions from Africa and Middle East, China and rest of Asia
- Increase in North America driven by the increase from USA
- Decrease in Europe

Emission inventories

Biogeochemistry models & datadriven methods

Top-down budget

Emission changes between 2000-2006 and 2017

Top-down, left; Bottom-up, right

- Global increase mainly from anthropogenic sources equally between Agriculture and Waste and Fossil Fuel
- Fossil Fuel emissions increased in China, North America (USA), Africa, and Asia
- Agriculture and Waste emissions increased mostly in Africa, Southern Asia and South America
- Emissions decreased in Europe from both Fossil Fuel and Agriculture and Waste sources

Source: Jackson et al. 2020 ERL (Fig 2)

Inverse models

Sink changes

- Hydroxyl radical, OH is the main oxidant of CH₄, responsible of about 90% of methane removal in the atmosphere.
- Two approaches derive estimates of OH quantity in the atmosphere:
 - 1. Chemistry climate models that includes hundreds chemical reactions between numerous species
 - 2. Box-modeling based on methyl-chloroform (MCF) observations
- Both approaches derive a 10-15% uncertainty on global OH mean concentrations.

Source: Zhao et al. 2019

- Chemistry climate models derive a null to positive trend in OH over 2000-2017
- MCF-based box modelling suggest a positive trend in OH over 1997-2005 followed by a negative trend from 2005 onward

 \Rightarrow High uncertainty remains on OH trend and interannual variability

OH uncertainty & impact on CH₄ emissions

Estimated CH₄ total emissions in year 2001 by one single top-down system using different OH distributions

- Methane emissions derived by top-down systems are dependent of the OH sink prescribed
- The range derived by an ensemble of top-down approaches in Saunois et al. (2020) is narrower than the one derived by a single top-down system when testing several OH distributions (from chemistry climate models)
- The uncertainty in global total methane emissions is probably underestimated in Saunois et al. (2020)

Impact of OH change in the methane sink

GLOBAL

CARBON

- OH increase before 2007 could explain part of the stabilization of atmospheric methane
- Stagnation or decrease in OH radicals can contribute to explain :
 - the renewed increase of atmospheric methane since 2007
 - The lighter atmosphere in ¹³C isotope since 2007

CARBON Since 2007: a sustained atmospheric CH_4 growth and $\delta^{13}C-CH_4$ decrease

GLOBAL

• Need to understand which changes in emissions are responsible for both increasing atmospheric methane and decreasing δ^{13} C-CH₄ since 2007

 Atmospheric CH₄ concentrations are rising faster over the last decades than in the 2000s. Since 2013, the trend in atmospheric methane concentrations is closer to the most greenhouse-gas-intensive scenarios of IPCC AR5 than scenarios integrating mitigation policies.

Highlights

GLOBAL

- Anthropogenic sources are responsible for all or most of the recent rapid rise in global CH₄ concentrations, equally from agriculture and fossil fuels sources. Tropical regions play the most significant role as contributors to the atmospheric growth.
- The role of methane sinks has to be further explored as a slower destruction of methane by OH radicals in the atmosphere could have also contributed to the observed atmospheric changes of the past decade. However high uncertainties on OH burden and trend prevent any solid conclusions.
- Methane global emissions were 576 TgCH₄/yr [550-594] for 2008-2017 as inferred by an ensemble of atmospheric inversions (top-down approach) using an atmospheric constraint.
- Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly complementary to CO₂ mitigation.
- Emission estimates from inventories/models (bottom-up approach) show larger global totals because of larger natural emissions. Improved emission inventories and estimates from inland water emissions are still needed.

Explore GHG emissions globally and by country and download data and illustrations. Also explore 'Outreach' and 'Research'.

www.globalcarbonatlas.org

The methane budget, using data from Saunois 2020, can be visualized in 3D at: https://svs.gsfc.nasa.gov/4799

GLOBAL CARBON Acknowledgements

The work presented in the Global Methane Budget 2020 has been possible thanks to the contributions of hundreds of people involved in observational networks, modeling, and synthesis efforts. Not all of them are individually acknowledged in this presentation for reasons of space (see slide 3 for those individuals directly involved).

Additional acknowledgement is owed to those institutions and agencies that provide support for individuals and funding that enable the collaborative effort of bringing all components together in the carbon budget effort.

NIES GOSAT project, GOSAT Research Computation Facility, National Aeronautic and Space Administration (NASA), Swedish National Infrastructure for Computing, ARC Linkage project, LSCE computing resources, ECMWF computing resources, European Commission Seventh Framework, Horizon2020, and ERC programme, ESA Climate Change Initiative Greenhouse Gases project, FRS-FNRS Belgium program, German federal Ministry of Education and Research, Gordon and Betty Moore foundation, Linköping University, US Department of Energy, Japanese Ministry of the Environment, Japanese Aerospace Exploration Agency, National Institute for Environmental Studies, all FAO member countries, Swedish Research Council, Ministry of the Environment (Japan), National Science Engineering Research Council of Canada, Commonwealth Scientific and Industrial Research Organization (CSIRO Australia), Australian Government Bureau of Meteorology, Australian Institute of Marine Science, Australian Antarctic Division, Australian Department of the Environment and Energy, Refrigerant Reclaim Australia, Australian National Environmental Science Program-Earth Systems and Climate Hub, NOAA USA, Meteorological Service of Canada, Met Office Climate Science for Service Partnership Brazil, UK Department for Business, Energy and industrial strategy

Attribution 4.0 International (CC BY 4.0)

This deed highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. You should carefully review all of the terms and conditions of the actual license before using the licensed material. Creative Commons is not a law firm and does not provide legal services. Distributing, displaying, or linking to this deed or the license that it summarizes does not create a lawyer-client or any other relationship. This is a human-readable summary of (and not a substitute for) the license.

You are free to: **Share** — copy and redistribute the material in any medium or format **Adapt** — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. What does "Attribute this work" mean? The page you came from contained embedded licensing metadata, including how the creator wishes to be attributed for re-use. You can use the HTML here to cite the work. Doing so will also include metadata on your page so that others can find the original work as well.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

References used in this presentation

GLOBAL

Global Methane Budget 2000-2017, data sources and data files at http://www.globalcarbonproject.org/methanebudget/

Saunois M. et al. (2020): The Global Methane Budget 2000-2017, Earth System Science Data, https://doi.org/10.5194/essd-12-1561-2020

Jackson R. B. et al. (2020) Increasing Anthropogenic Methane Emissions Arise Equally from Agricultural and Fossil Fuel Sources. Environmental Research Letters, <u>https://doi.org/10.1088/1748-9326/ab9ed2</u>

- Dalsoren et al. (2016): Atmospheric methane evolution the last 40 years, Atmos. Chem. Phys., 16,3099-3126, http://dx.doi.org/10.5094.acp-16-3099-2016
- Ganesan A. L. et al. (2020): Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement, <u>https://doi.org/10.1029/2018GB006065</u>
- IPCC (2013) WGI. 5th Assessment Report. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Kirschke, S. et al. (2013): Three decades of global methane sources and sinks. Nature Climate Change, 6, 813-823, http://dx.doi.org/10.1038ngeo1955
- Nisbet E. et al. (2019): Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement, https://doi.org/10.1029/2018GB006009, 2019
- Rigby M. et al. (2017): Role of atmospheric oxidation in recent methane growth, Proc. Natl. Acad. Sci., 114(21), 5373, <u>https://doi.org/10.1073/pnas.1616426114</u>, 2017.
- Saunois, M. et al. (2016): The Global Methane Budget 2000-2012, Earth System Science Data, 8, 1-54, http://dx.doi.org/10.5194/essd-8-1-2016
- Saunois M. et al. (2016): The growing role of methane in anthropogenic climate change. Environmental Research Letters, vol. 11, 120207, DOI: 10.1088/1748-9326/11/12/120207. <u>http://iopscience.iop.org/article/10.1088/1748-9326/11/12/120207</u>
- Zhao Y. et al. (2019): Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period, Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, 2019.
- Zhao Y. et al. (2020): Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1208, accepted, 2020.