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e LPJ-wsl (zhangetal., 2016)
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Global Methane Budget 2000-2017

The Giobal Carbon Project (GCP) publishes an up-date of the giobal methane (CHe) sources and sinks 1o the
atmosphre. Thi 9 % (about 50 Miion tons)

batween 2000-2006 and 2017. 3
‘squal shares between fossil fuel sector and agricuiure and waste sector.

with

The study was conducted by

et de IEnvironnement (LSCE, CEA-CNRS-UVSQ) in France, under the umbreta of the Global Carbon Project
that initisted the work Two articles July 15t Research Lotiers
and Earth System Science Data.

article dol: 1051

data doi: 1015 +-2019 (this page)

Citation: Saunois, M., Stavert, A. R, Pouiter, B., Bousquet, P., Canadell, J. G.. Jackson, R, 8., Raymond, P. A.,

Diugokencky, E. J., Houwsling, 5., Patra. P. K., Ciass, P., Arora, V. K., Bastviken, D., Bergamasch, P, Blake, D.

R Brailsford, G., Brubwier, L., Carison, K_ M., Carrol, M. .. Zhuang, Q. (2020). Supplemental data of the
Budget Project.

itps ot 0rg10.18160/GCP-CH4-2018

The use of data sources. Fi the are
gven at In order at rogional scale,

provided on a 1°x1* grid as Netca! fles. For research projects, f the data are essential 1o the work, or if an
important resut or conclusion depends on the data, co-authorship may need o be considered. The Giobal
Carbon Projoct - Mothana faciitates access 10 data o encourage its Lse and promote a good understanding of
the methane cycle. Respecting original data sources is key 1o help secure the support of data providers to
‘enhance, maintain and update valuable data.

https://www.icos-cp.eu/GCP-CH4/2019

Sclence & mpact

Supplemental data to Global Methane Budget 2000-2017
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All data are shown in

teragrams CH, (TgCH,) for emissions and sinks
parts per billion (ppb) for atmospheric concentrations

1 teragram (Tg) = 1 million tonnes = 1 X 10%g
2.78 Tg CH, per ppb

Disclaimer

The Global Methane Budget and the information presented here are intended for those interested in learning about
the carbon cycle, and how human activities are changing it. The information contained herein is provided as a public
service, with the understanding that the Global Carbon Project team make no warranties, either expressed or
implied, concerning the accuracy, completeness, reliability, or suitability of the information.
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*  After carbon dioxide (CO,), methane (CH,) is the T
i i i 1800 Methane (CH.)
most important greenhouse gas contributing to _

< Antarctic (Law Dome) ice/firn
human-induced climate change. 1600 o Cape Grim (flasks/in situ)

02024 Fewrh

1400 Etheridge et al., JGR, 1996; 1998
. | MacFarling Meure et al., GRL, 2006
12001 Rubino et al., ESSD, 2019

tio (ppb)

ing ra

e  For atime horizon of 100 years, CH, has a Global

Warming Potential 28 times larger than CO,. E,moo i Updated to 2020 ]
[&]
800 |- & E

. Methane is responsible for 23% of the global ol @ oo cotmasee 0 c00 @ 990 PupadnWhpa e __

warming produced by CO, CH, and N,O. A T T S S S S

’ 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Year

e  The concentration of CH, in the atmosphere is e  Methane also contributes to tropospheric production

150% above pre-industrial levels (cf. 1750). of ozone, a pollutant that harms human health, foof

production and ecosystems.

e The atmospheric lifetime of CH, is 9+2 years,

making it a good target for climate change e  Methane also leads to production of water vapor in the
mitigation stratosphere by chemical reactions, enhancing global
warming.

Sources : Saunois et al. 2016; 2020, ESSD; IPCC 2013 5AR; Etminan et al. 2016
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An ensemble of tools and data to estimate the global methane budget

Atmospheric
observations

Emission
inventories

models & data-
driven methods

Ground-based
data from
observation
networks (AGAGE,

CSIRO, NOAA, uCl,
LSCE, others).

Satellite data
(GOSAT)

Agriculture and
waste related
emissions, fossil
fuel emissions
(EDGARv4.3.2,CEDS,

USEPA, GAINS, FAO).

Fire emissions
(GFED4s, FINN,
GFAS,QFED, FAO).

Biofuel estimates

Ensemble of 13
wetland models

Model for termites
emissions

Other sources
from literature
(inland water,
geological, wild
animal...)

OH sink from
CCMI experiment.

Soil uptake &
chlorine sink
taken from the
literature

Suite of 9
atmospheric
inversion models
(CTE-CH,, GELCA,
PYVAR-LMDz, MIRO4-
ACTM, NICAM-TM,
NIES-TM FLEXPART,
TM5-CAMS, TM5-
4DVAR-NIES,
TOMCAT).

Ensemble of 22
inversions (diff. obs
& setup)
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GLOBAL| CARBON CH, Atmospheric Growth Rate 2000-2017
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o * Slowdown of atmospheric
8 growth rate before 2006
‘E. * Resumed increase after 2006
=
O

2000 2005 2010 2015
Year

Atmospheric S S i l. 2020, ESSD (Fig. 1
observations ource: Saunois et al. , (Fig. 1)
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The projections represented here correspond to RCPs defined for IPCC 5t Assessment Report

1950 T T T T T T T T T T g T T

1900

1850

CH, concentrations (ppb)

1800

1750 Updated from Saunois et al. 2016, ERL
- lobal Cart j .
IG ? Ia Cal mlpmjfd T S o Observations: Globally averaged
2005 2010 2015 2020 2025 2030 marine surface annual mean data
Year from NOAA

* Methane concentrations rose faster in 2014, 2015 and 2019 with more than 10 ppb/yr.
* Since 2013, the atmospheric increase is approaching the warmest scenario of IPCC AR5 report
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The projections represented here correspond to SSPs defined for IPCC 6" Assessment Report

700
Anthropogenic emissions:
All inventories, except EPA, infers an 600
increase in emissions as fast as the
warmest scenarios between 2005 500

and 2017.

Forcing target & scenario temperature range in 2100
Median temperatures using MAGICC (ECS=3°C)
Baseline (3.0-5.1°C)

6.0W/m?2 (3.2-3.3°C)

3.4W/m2 (2.1-2.3°C)
2.6W/m2 (1.7-1.8°C)
1.9W/m2 (1.3-1.4°C)

Atmospheric

observations

TgCH4y-1

Anthropogenic CH,; Emissions

Emission inventories

CEDS+GFED SSP5-85
L EDGAR+GFED NS
GAINS+GFED < e

c—SSP4-3.4

SSP1-2.6
SSP1-1.9
100 |
O 1 1 i i J
2000 2010 2020 2030 2040 2050

inventories

Source: Saunois et al. 2020, ESSD (Fig. 2)
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The projections represented here correspond to SSPs defined for IPCC 6" Assessment Report

Atmospheric concentrations: ‘ Concentration (CHy)
* Atmospheric observations (black line)
fall between the estimates of the s »—SSP5-8.5
different scenarios 2400 s
o . SSP4-6.0
=> Monitoring of future years trends in 2200
emissions and concentration is critical to 3
e . . . 2000 e : 5—SSP4-3.4
assess mitigation policy efficiency 2 : e
© 1800
1600
Forcing target & scenario temperature range in 2100 3
Median temperatures using MAGICC (ECS=3°C) 1400 Bkl
Baseline (3.0-5.1°C) SSP1-1.9
6.0W/m? (3.2-3.3°C) 1200 |
3.4W/mz2 (2.1-2.3°C) 1000 . . . . )
2.6W/m2 (1.7-1.8°C) 2000 2010 2020 2030 2040 2050

1.9W/m2 (1.3-1.4°C)

Atmospheric

observations inventories Source: Saunois et al. 2020, ESSD (Fig. 2)
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GLOBAL METHANE BUDGET 2008-2017 ©®O
CHANGE N TOTAL SINKS

ATMOSPHERIC ABUNDANCE

TOTAL EMISSIONS
13*
> 100
e 625 556
(500-798) (501-574)

737 576
N

Bottom-up Top-down
view (BU) view (TD)
'

206 217 30 30 149 181 222 595 518 30 38
(26-40) (22-36) (102-182) (159-200) (143-306) {Z'I -5[)} (489-749) (474-532)  (11-49) (27-45)

128 m
(191-223) (207-240)

(113-154) (81-131)
Sink from

= chemical reactions
in the atmosphere

Other natural L Sink in soils

Fossil fuel Agriculture and waste Blomass an.d biofel Wetlands C
production and use burning emissions
Inland waters, geologlcal,
oceans, termives, wild animals,
permafrost, vegetation

N

Source: Saunois et al. 2020, ESSD (Fig. 6)
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Global Methane Budget 2017 Top-down

budget

GLOBAL METHANE BUDGET 2017 ©OO

108
(91-121)

Fossil fuel
production and use

TOTAL EMISSIONS A T AT TOTAL SINKS
+16.8*
(14.0to 19.5) 571
(540-585)
N
227 28 194 531 0
(205-246) (25-32) (155-217) {21 -50) (502-540) (37-47)

- | Sink from

d chemical reactions
" 2 \ in the atmosphere

Agriculture and waste Lo an_d biofisel Wetlands e L Sl
burning emissions

Inland waters, geologlcal,
oceans, termites, wild animals,
permafrost, vegetation

Source: Jackson et al. 2020, ERL (Fig. 1)
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g Wetlands oy a4 mg(CH,).m* day"

50.0
40.0
30.0
20.0
15.0

Agriculture & Waste Biom. & biof. burning 10.0
5.0

2.0
1.0
0.5
0.0

: : Source: Saunois et al. 2020, ESSD (Fig 3);
inventories . e
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* Wetlands are the largest natural global CH, source

* Vegetated wetland emissions are estimated using an ensemble of
land-surface models constrained with remote-sensing based surface
water and inventory based vegetated wetlands

* The resulting global flux range for natural wetland emissions is 102—
182 TgCH,/yr for the decade of 2008-2017, with an average of 149
TgCH4/yr.

[ J Source: Saunoisetal. 2020, ESSD
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Termites mg(CH.).m".day"

0.0

Other natural sources not mapped here are inland water emissions, permafrost and hydrates

Source: Saunois et al. 2020 (Fig 4)
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Tropospheric

chlorine Soil uptake
1-35Tg/yr__ 10-45 Tg/yr

Stratospheric
chemistry
12-37 Tg/yr

Tropospheric
OH
489-749 Tg/yr

Source : Saunois et al., 2020 i ‘
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[ Bottom-up budget ] (TgCH,/yr) [ Top-down budget ]
149 [50%]| 4= Natural wetlands = | 181 [20%]
. 206 [15%] | €= Agriculture & waste = | 217 [15%]
Rice 30 [40%] m _
Enteric ferm & manure 111 [10%] - [
Landfills & waste 65 [15%] o O
128 [30%] € Fossil fuel = 111 [50%
Coal 42 [80%) : . [50%1
e Gas & oil 80 [30%] &
Industry and transport 7 [250 %) B
30 [30%] | €Biomass/biofuel burning=>{ 30 [50%]
222 [70%] | €=Other natural emissions=» | 37 [80%]

Inland WaterS 209 [70%] ¥ Mean [uncerta]nty:
Geological 45 [100%] min-max range %]
Termites 9 [100%] ‘

- Oceans 6 [100%]
1 Wild animals 2 [100%]
Permafrost 1 [100%]

Mean [uncertainty = min-max range %)

Ay 1

[ Top-down budget ]
Atmospheric inversions

[ Bottom-up budget ]
Process models, inventories,
data driven methods

737 TgCH,/yr [584-881] Source : Saunois et al. 2020, ESSD| 576 TgCH,/yr [550-594]

Mean [min-max range %]
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300
] Top-down, left; Bottom-up, right
*  Global emissions: — 0 E
576 TgCH,/yr [550-594] for TD 5 ; T i
737 TgCH,/yr [594-881] for BU T ] =+ TI
E: 200 1 1 _
« TD and BU estimates generally agree for agricultural emissions o * * '
£ 180 _
« Estimated fossil fuel emissions are lower for TD than for BU % Z Il
approaches @ 100
Pp £ : 1
« Estimated wetland emissions are higher for TD than for BU = 50 _
approaches ] F== ||
: : 0 - —
» Large discrepancy between TD and BU estimates for freshwaters 4 £ 3 % T
and natural geological sources (“other natural sources”) % J% = Z =
] s
= @ 2 'En ©
L I = =
£ &
Source: Saunois et al. 2020, ESSD (Fig 5) é:—._.l:'

;

B
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90°S-30°N 30°N-60°N 60°N-90°N Contribution to global emissions
£ 200 - - - 50 7 W Tropics (< 30°N)
< 140 - o
S ] m Mid-latitudes (30°N-60°N)
80 150 - = 120 7 40
= m Northern high latitudes (60°N-90°N)
2 TT | 100- ]
] 1 — T% 4%
@ ] * 80 - T =F
4 100 =
qE) * ~ 60 1 _,_f -1 20 7
£ II
, 40 -
s % E ! 10 1 32%
s e + 20 — o -
=+ P
2 vly T T T 0 g r T T o0 T T
2 0 3 5 = a 2 =) = 0 a o

@ i < & s < a L <

£ E £

a @ ]

Source: Saunois et al. 2020, ESSD (Fig 7)

B
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@ 60°N-90°N

24 Tg CHq yr=1

30°N-60°N
188 Tg CH, yr?t

Wetland .

Fossil r
Agriculture and Waste -

£ .
Biomass & biofuel burning 90°S-30°N
Other natural

= - 383 Tg CHg yr?

20 40 60 80 100 120

Methane emissions (Tg CH, yr1)
*  64% of global methane emissions come mostly from tropical sources
* Anthropogenic sources are responsible for about 60% of global emissions.
* Largest emissions in South America, Africa, South-East Asia and China (50% of global emissions)
* Dominance of wetland emissions in the tropics and boreal regions
* Dominance of agriculture & waste in Asia
* Balance between agriculture & waste and fossil fuels at mid-latitudes

Source: Jackson et al. 2020 ERL (Fig 2)
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Global Methane Budget 2000—2017: regional & natural and anthropomorphic source estimates

Methane source estimates ower the period 2008-2017 from Top-Down {left) and Bottom-Up (right) approaches showing
contributions {mean [min, max]) from 18 continental regions with respect to five broad source categories [Fossil fuel
production & use, Agriculture & Waste, Biofuel & Biomass burning, Wetlands, and Other Natural sources). Total source
estimates from the Bottom-Up approach are further classed into finer subcategories. Data source: Ssunois et al. (2018).

Top-Down budget (2008-2017) Bottom-Up budget (2008-2017)
Global sources: 572 [538-583] Tg CH4 yr' Global sources: 737 [592-880] Tg CH4 yr'

Source: Carbon Atlas

www.globalcarbonatlas.org
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Emission changes between 2000-2006 and 2017
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* About 50 TgCH,/yr emissions increase between 2000-2006 and 2017

60

-20

Q°$ Error bar = min-max estimates

Source: Jackson et al. 2020 ERL (Fig 2)

* Increase mainly from the Tropics (about 30 TgCH,/yr), followed by mid-latitudes (15-20 TgCH,/yr )

» Regional contributions from Africa and Middle East, China and rest of Asia
* Increase in North America driven by the increase from USA

» Decrease in Europe i [ J " ‘
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.

Global increase mainly from anthropogenic
sources equally between Agriculture and Waste
and Fossil Fuel

Fossil Fuel emissions increased in China,
North America (USA), Africa, and Asia

Agriculture and Waste emissions increased
mostly in Africa, Southern Asia and South
America

Emissions decreased in Europe from both
Fossil Fuel and Agriculture and Waste

sources
Source: Jackson et al. 2020 ERL (Fig 2)
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e Hydroxyl radical, OH is the main oxidant of CH,, responsible of about 90% of methane removal in the atmosphere.
* Two approaches derive estimates of OH quantity in the atmosphere:
1. Chemistry climate models that includes hundreds chemical reactions between numerous species

2. Box-modeling based on methyl-chloroform (MCF) observations

*  Both approaches derive a 10-15% uncertainty on global OH mean concentrations.

Chemistry Climate models MCF-based box modelling
Global tropospheric OH 1.35 —r : P . .
13 . ! - : 0. { == Montzka et al. (2011) scaled
__ 130 == Rigby etal. (2013)
£ 1.25
o
§ =§ 1.20
©
g o 1.15
e ':E 1.10
S
1.05
1980 1985 1990 1995 2000 2005 2010

8 T T T T '0.
1960 1970 1980 1990 2000 2010
Source: Zhao et al. 2019 Source: Rigbyet al. 2017
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PROJECT

*  Chemistry climate models derive a null to positive trend in OH over 2000-2017

* MCF-based box modelling suggest a positive trend in OH over 1997-2005 followed by a negative trend from 2005

onward
= High uncertainty remains on OH trend and interannual variability
Chemistry climate models MCF-based box modelling versus chemistry climate models
OH anomaly 2000-2010 OH anomaly 1980-2015
04 1 1 1 1 1 1 1 1 1
MCF-based studies Chemistry climate models
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Source: Ganesan et al. 2020
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Estimated CH, total emissions in year 2001 by one single top-down system using different OH distributions
800 1 1 1 1
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Top-Down estimates
550 | MELESM1:1 &8 wea e } for 2000-2009
‘.IN;,L\NHIII;CIAERS Saunois et al. (2020)
500 5 . . .
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Source: Zhao et al. 2020, ACP [OH] gyp.cu [1 0° molec cm’]

* Methane emissions derived by top-down systems are dependent of the OH sink prescribed

* The range derived by an ensemble of top-down approaches in Saunois et al. (2020) is narrower than the one derived
by a single top-down system when testing several OH distributions (from chemistry climate models)

* The uncertainty in global total methane emissions is probably underestimated in Saunois et al. (2020)
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* OH increase before 2007 could explain part
o - of the stabilization of atmospheric methane
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Source : Dalsoren et al., 2016



crosatlcarson  Since 2007: a sustained atmospheric CH, growth and &13C-CH, decrease

 NOAA Global surface CH,
~ 1840 1867 ppb reached in 2019 !
"é Renewed growth 1
~ 1810} Stabilisation r CH, Growth rates :
5 1780 .
. ] 2014 : 12.7+0.5 ppb yrt
2015 : 10.10.7 ppb yrt
: ] 2016 : 7.0+0.6 ppb yr !
W —47.0F . 2017 : 7.0+0.9 ppb yr?
~ —471 _. / Decline _ 2018 : 8.5+0.6 ppb yr?
S : ] 2019: 10.740.6 ppb yr?
o 472 - v
o —47 3E d13C-CH, decreased by -0.2%o. in 10 years
: Global surface 8'3C-CH, ]
2000 2005 2010 2015 Source : Nisbet et al., 2019
Year

« Need to understand which changes in emissions are responsible for both increasing atmospheric methane
and decreasing 8*3C-CH, since 2007
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* Atmospheric CH, concentrations are rising faster over the last decades than in the 2000s. Since 2013, the trend in
atmospheric methane concentrations is closer to the most greenhouse-gas-intensive scenarios of IPCC AR5 than
scenarios integrating mitigation policies.

* Anthropogenic sources are responsible for all or most of the recent rapid rise in global CH, concentrations, equally
from agriculture and fossil fuels sources. Tropical regions play the most significant role as contributors to the
atmospheric growth.

* The role of methane sinks has to be further explored as a slower destruction of methane by OH radicals in the
atmosphere could have also contributed to the observed atmospheric changes of the past decade. However high
uncertainties on OH burden and trend prevent any solid conclusions.

*  Methane global emissions were 576 TgCH,/yr [550-594] for 2008-2017 as inferred by an ensemble of atmospheric
inversions (top-down approach) using an atmospheric constraint.

* Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly
complementary to CO, mitigation.

* Emission estimates from inventories/models (bottom-up approach) show larger global totals because of larger
natural emissions. Improved emission inventories and estimates from inland water emissions are still needed.
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Global Carbon Atlas
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Explore GHG emissions globally and by country and
download data and illustrations. Also explore ‘Outreach’
and ‘Research’.

www.globalcarbonatlas.org
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scosatlcagson  NASA 3D visualization

The methane budget, using data from Saunois 2020, can be visualized in 3D at: https://svs.gsfc.nasa.gov/4799

NASA  Scientific Visualization Studio

Sources of Methane

Visualizations by Cindy Starr Released on March 23, 2020 EHE 0
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