

Global Nitrous Oxide Budget

2020

The GCP is a Global Research Project of

Published on 7 October 2020 PowerPoint version 1.0 (released 7 October 2020)

Acknowledgements

The work presented here has been possible thanks to the enormous observational and modelling efforts of the institutions and networks below

Atmospheric N₂O datasets NOAA/ESRL | AGAGE | CSIRO

Inventories FAOSTAT | GAINS | EDGAR 4.3.2 | GFED v4.0

Other sources

SRNM | one nutrient budget model | Mechanistic Stochastic Modeling Atmospheric inversions INVICAT | PyVAR | MIROC4-ACTM | GEOSChem

Land models DLEM | LPJ-GUESS | LPX-Bern | OCN | ORCHIDEE | ORCHIDEE-CNP | VISIT

Ocean models Bern-3D | NEMOv3.6-PISCESv2-gas | NEMO-PlankTOM10 | UVic2.9 | NEMO-PISCES 3.2

Full acknowledgements provided in Tian et al. (2020) Nature

Global N₂O Budget - Scientific Steering Committee:

H Tian USA – Co-Chair | RL Thompson Norway – Co-Chair | JG Canadell Australia | W Winiwarter Austria | P Suntharalingam UK | EA Davison USA | M Prather USA | P Ciais France | RB Jackson USA | P Raymonds USA | P Regnier Belgium | G Maenhout Italy | F Zhou China

Contributors:

Rongting Xu USA | Naiqing Pan USA | Shufen Pan USA | Glen P. Peters Norway | Hao Shi USA | Francesco N. Tubiello Italy | Sönke ZaehleGermany | Gianna Battaglia Switzerland | Sarah Berthet France | Laurent Bopp France | Alexander F. Bouwman The Netherlands |Erik T. Buitenhuis UK | Jinfeng Chang China | Martyn P. Chipperfield UK | Shree R.S. Dangal USA | Edward Dlugokencky USA |James Elkins USA | Bradley D. Eyre Australia | Bojie Fu China | Bradley Hall USA | Akihiko Ito Japan | Fortunat Joos Switzerland |Paul B. Krummel Australia | Angela Landolfi Italy | Goulven G. Laruelle Belgium | Ronny Lauerwald France | Wei Li China |Sebastian Lienert Switzerland | Taylor Maavara USA | Michael MacLeod UK | Dylan B. Millet USA | Stefan Olin Sweden | Prabir K. PatraJapan | Ronald G. Prinn USA | Daniel J. Ruiz USA | Guido R. van der Werf The Netherlands | Nicolas Vuichard France | Junjie WangChina | Ray Weiss USA | Kelley C. Wells USA | Chris Wilson UK | Jia Yang USA | Yuanzhi Yao USA

Hanqin Tian, Rongting Xu, Josep G. Canadell, Rona L. Thompson, Wilfried Winiwarter, Parvadha Suntharalingam, Eric A. Davidson, Philippe Ciais, Robert B. Jackson, Greet Janssens-Maenhout, Michael J. Prather, Pierre Regnier, Naiqing Pan, Shufen Pan, Glen P. Peters, Hao Shi, Francesco N. Tubiello, Sönke Zaehle, Feng Zhou, Almut Arneth, Gianna Battaglia, Sarah Berthet, Laurent Bopp, Alexander F. Bouwman, Erik T. Buitenhuis, Jinfeng Chang, Martyn P. Chipperfield, Shree R.S. Dangal, Edward Dlugokencky, James Elkins, Bradley D. Eyre, Bojie Fu, Bradley Hall, Akihiko Ito, Fortunat Joos, Paul B. Krummel, Angela Landolfi, Goulven G. Laruelle, Ronny Lauerwald, Wei Li, Sebastian Lienert, Taylor Maavara, Michael MacLeod, Dylan B. Millet, Stefan Olin, Prabir K. Patra, Ronald G. Prinn, Peter A. Raymond, Daniel J. Ruiz, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Ray Weiss, Kelley C. Wells, Chris Wilson, Jia Yang, Yuanzhi Yao (2020) **A comprehensive quantification of global nitrous oxide sources and sinks**, Nature, 7 October 2020

Article

A comprehensive quantification of global nitrous oxide sources and sinks

https://doi.org/10.1038/s41586-020-2780-0

Received: 28 December 2019

Accepted: 14 August 2020

Check for updates

Hanqin Tian^{1™}, Rongting Xu¹, Josep G. Canadell², Rona L. Thompson³, Wilfried Winiwarter^{4,5},
Parvadha Suntharalingam⁶, Eric A. Davidson⁷, Philippe Ciais⁸, Robert B. Jackson^{9,10,11},
Greet Janssens-Maenhout^{12,13}, Michael J. Prather¹⁴, Pierre Regnier¹⁵, Naiqing Pan^{1,16},
Shufen Pan¹, Glen P. Peters¹⁷, Hao Shi¹, Francesco N. Tubiello¹⁸, Sönke Zaehle¹⁹, Feng Zhou²⁰,
Almut Arneth²¹, Gianna Battaglia²², Sarah Berthet²³, Laurent Bopp²⁴, Alexander F. Bouwman^{25,26,27},
Erik T. Buitenhuis^{6,28}, Jinfeng Chang^{8,29}, Martyn P. Chipperfield^{30,31}, Shree R. S. Dangal³²,
Edward Dlugokencky³³, James W. Elkins³³, Bradley D. Eyre³⁴, Bojie Fu^{16,35}, Bradley Hall³³,
Akihiko Ito³⁶, Fortunat Joos²², Paul B. Krummel³⁷, Angela Landolfi^{38,39}, Goulven G. Laruelle¹⁵,
Ronny Lauerwald^{8,15,40}, Wei Li^{8,41}, Sebastian Lienert²², Taylor Maavara⁴², Michael MacLeod⁴³,
Dylan B. Millet⁴⁴, Stefan Olin⁴⁵, Prabir K. Patra^{46,47}, Ronald G. Prinn⁴⁸, Peter A. Raymond⁴²,
Daniel J. Ruiz¹⁴, Guido R. van der Werf⁴⁹, Nicolas Vuichard⁸, Junjie Wang²⁷, Ray F. Weiss⁵⁰,
Kelley C. Wells⁴⁴, Chris Wilson^{30,31}, Jia Yang⁵¹ & Yuanzhi Yao¹

https://doi.org/10.1038/s41586-020-2780-0

Acceleration of global N_2O emissions seen from two decades of atmospheric inversion

R. L. Thompson^{® 1*}, L. Lassaletta^{® 2}, P. K. Patra^{® 3}, C. Wilson^{® 4.5}, K. C. Wells^{® 6}, A. Gressent^{® 7}, E. N. Koffi^{® 8}, M. P. Chipperfield^{® 4.5}, W. Winiwarter^{® 9,10}, E. A. Davidson^{® 11}, H. Tian^{® 12} and J. G. Canadell^{® 13}

Nitrous oxide (N₂O) is the third most important long-lived GHG and an important stratospheric ozone depleting substance. Agricultural practices and the use of N-fertilizers have greatly enhanced emissions of N₂O. Here, we present estimates of N₂O emissions increased substantially from 2009 and at a faster rate than estimated by the IPCC emission factor approach. The regions of East Asia and South America made the largest contributions to the global increase. From the inversion-based emissions, we estimate a global emission factor of 2.3 \pm 0.6%, which is significantly larger than the IPCC Tier-1 default for combined direct and indirect emission increase found from the argen emission suggest that N₂O emission increase found from the provide the significant provides that N₂O emission factor of 0.3 \pm 0.6%, which is significantly larger than the IPCC Tier-1 default for combined direct and indirect emissions of 1.375%. The larger emission factor and accelerating emission increase found from the inversion-base a global and regional scales with high levels of N-input.

https://doi.org/10.1038/s41558-019-0613-7

AMERICAN METEOROLOGICAL SOCIETY

nature

climate change

JUNE 2018 BATIS

THE GLOBAL N₂O MODEL INTERCOMPARISON PROJECT

Hanqin Tian, Jia Yang, Chaoqun Lu, Rongting Xu, Josep G. Canadell, Robert B. Jackson, Almut Arneth, Jinfeng Chang, Guangsheng Chen, Philippe Ciais, Stefan Gerber, Akihiko Ito, Yuanyuan Huang, Fortunat Joos, Sebastian Lienert, Palmira Messina, Stefan Olin, Shufen Pan, Changhui Peng, Eri Saikawa, Rona L. Thompson, Nicolas Vuichard, Wilfried Winiwarter, Sonke Zaehle, Bowen Zhang, Kerou Zhang, and Qiuan Zhu

The N₂O Model Intercomparison Project (NMIP) aims at understanding and quantifying the budgets of global and regional terrestrial N₂O fluxes, environmental controls, and uncertainties associated with input data, model structure, and parameters.

ARTICLES https://doi.org/10.1038/s41558-019-0613-7

Emissions are shown in Mega tonnes N

1 Megatonne (Mt) = 1 million tonnes = 1 × 10¹²g = 1 Teragram (Tg)

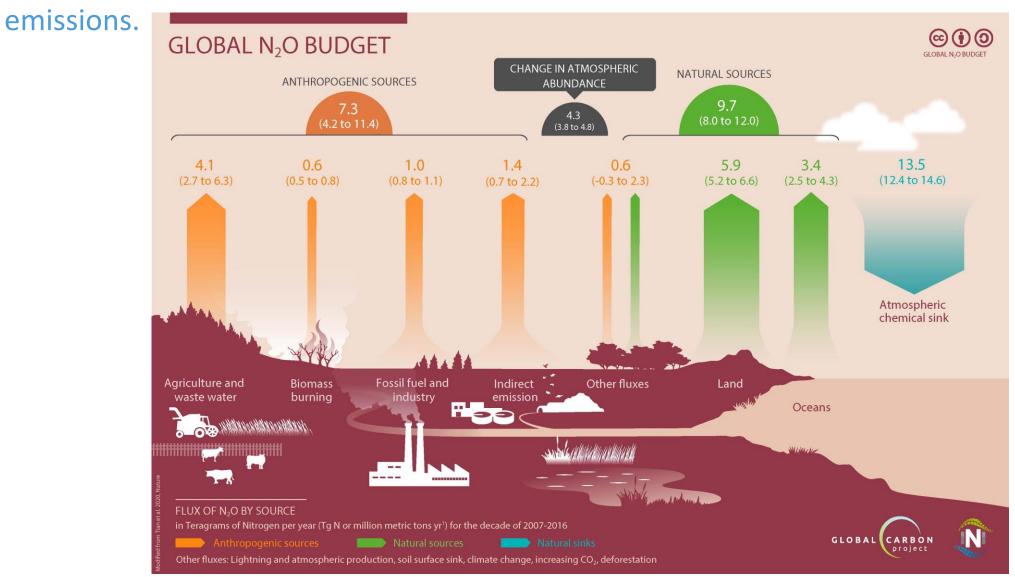
1 kg nitrogen in nitrous oxide (N) = 1.57 kg nitrous oxide (N₂O)

 $1 \text{ MtN} = 1.57 \text{ million tonnes } N_2 O = 1.57 \text{ MtN}_2 O$

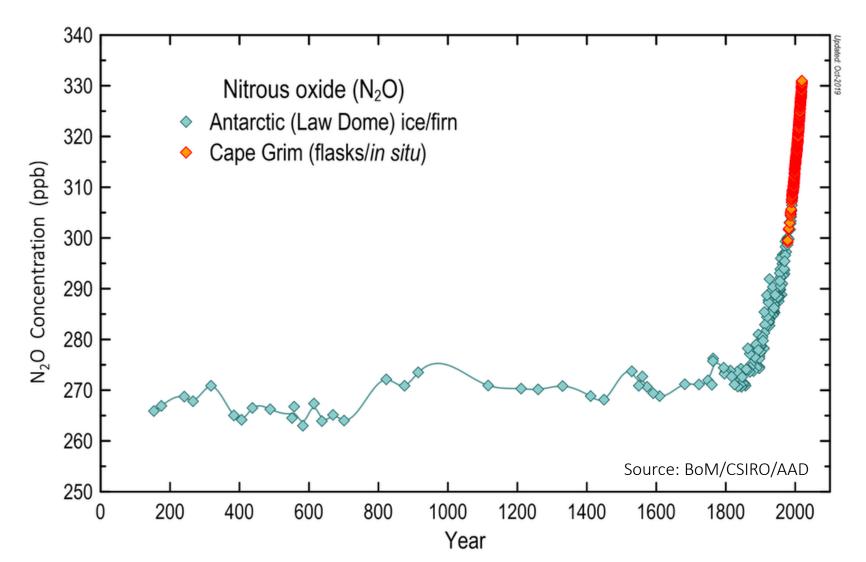
Disclaimer

The Global Carbon Budget and the information presented here are intended for those interested in learning about the carbon cycle, and how human activities are changing it. The information contained herein is provided as a public service, with the understanding that the Global Carbon Project team make no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability of the information.

- N₂O is both a powerful greenhouse gas (GHG) and a ozone-depleting substance.
- Per unit of mass, N₂O is considered 298 times as effective as a greenhouse gas as CO₂ when integrating over 100-years.
- Once emitted, N₂O stays in the atmosphere for longer than a human life, about 116 ±9 years.
- N₂O is the third most important GHG contributing to human-induced global warming, after carbon dioxide (CO₂) and methane (CH₄).
- N₂O is responsible for 6.5% of the global warming due to three most important GHGs (CO₂, CH₄ and N₂O) (Updated to 2019 from Etminan et al. 2016, GRL)
- N₂O concentration in the atmosphere reached 331 parts per billion (ppb) in 2018 (WMO 2020, United in Science), about 22% above levels around the year 1750, before the industrial era began.

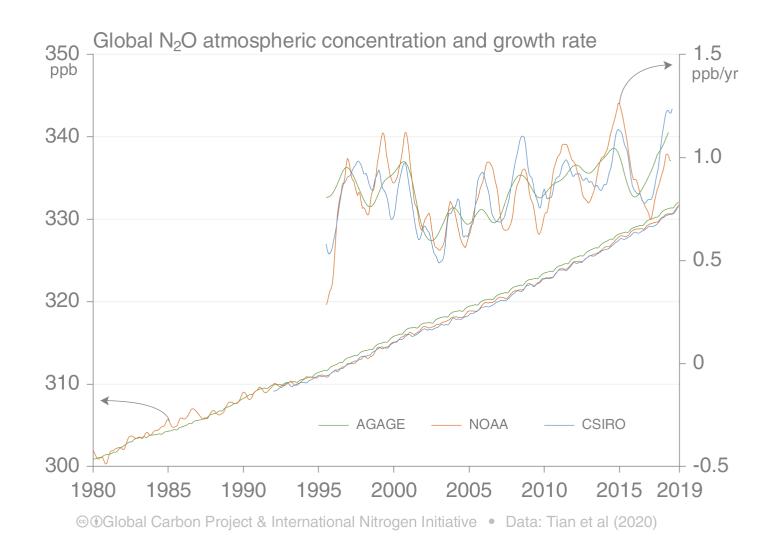


- Global N₂O emissions were about 17.0 (15.9–17.7) Tg N yr⁻¹ over the 10-year period 2007-2016 (based on two approaches).
- Global anthropogenic emissions increased by 30% since 1980, dominated by nitrogen fertilization in croplands. The anthropogenic emission increase is almost exclusively responsible for the growth in atmospheric N₂O.
- Soil N₂O emissions are increasing due to interactions between nitrogen inputs and global warming, constituting an emerging positive N₂O-climate feedback.
- The recent increase in global N₂O emissions exceeds the emission trends of the least optimistic scenarios developed by the Intergovernmental Panel on Climate Change (IPCC), underscoring the urgent need to mitigate N₂O emissions.

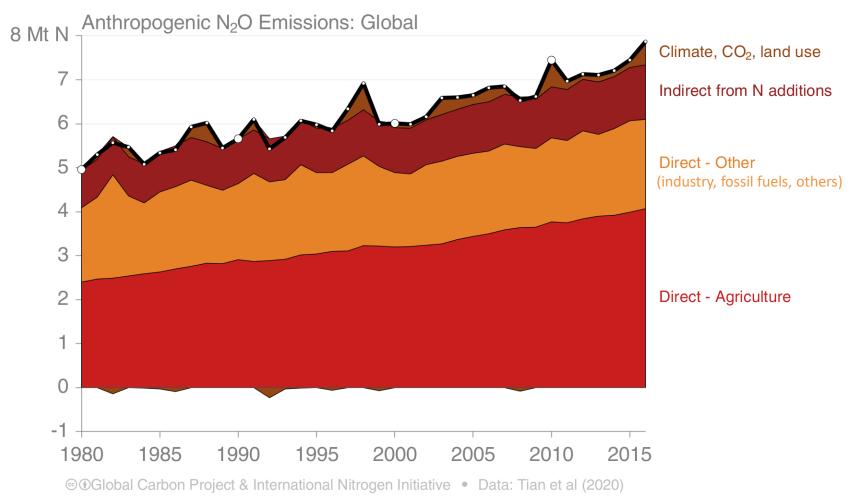

GLOBAL

CARBON PROJECT

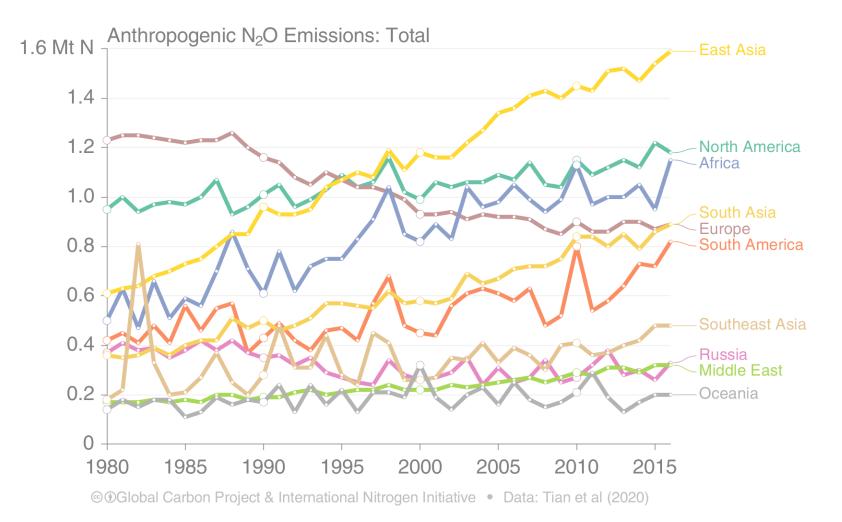
Anthropogenic sources contribute, for the central estimate, 43% to total global N₂O

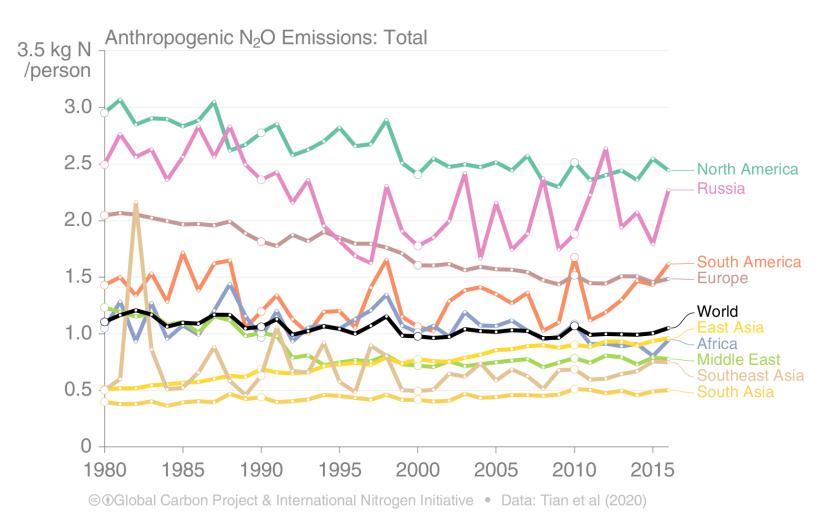


The global N_2O concentration has increased by about 22%, from 270 parts per billion (ppb) in 1750 to 331 ppb in 2018.

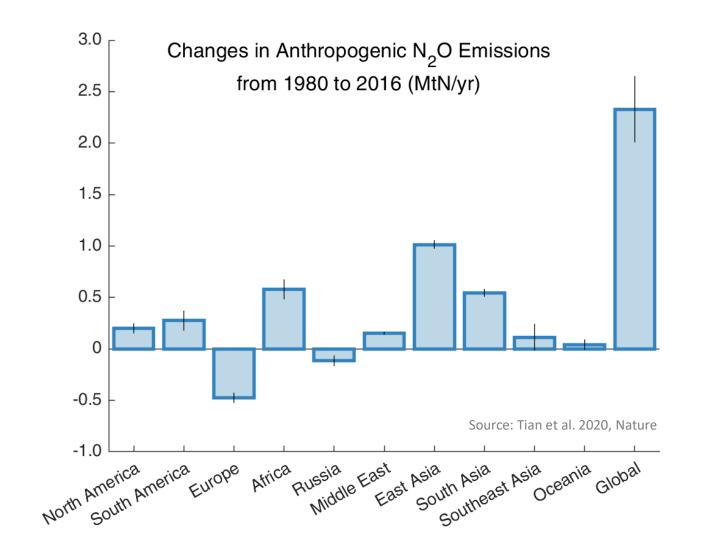

The growth in global atmospheric N_2O is accelerating The mean growth rate since 2000 is 0.84 ppb/yr

Global Anthropogenic N₂O Emissions

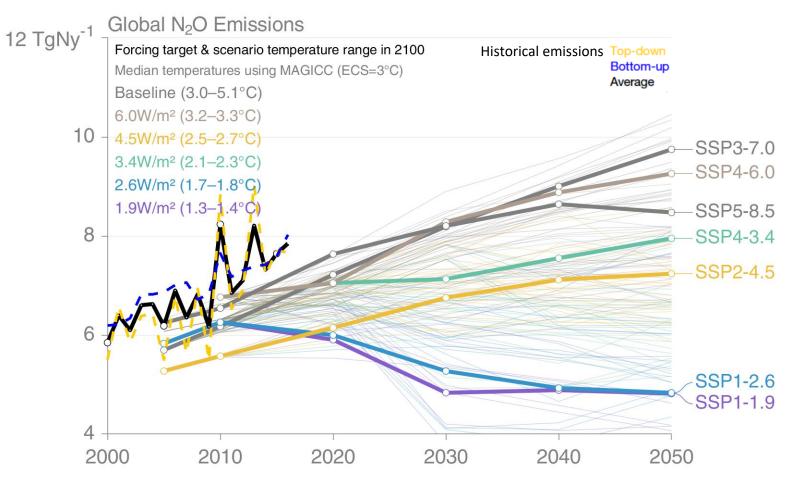

Global anthropogenic N_2O emissions are growing at over 1% pear year. Agriculture is the single largest anthropogenic source of N_2O emissions.


Direct sources are those occurring where nitrogen additions are made, while indirect sources are those occurring down-stream or downwind

The recent global increase in N₂O emissions is driven by Asia, followed by South America and Africa, while emissions in Europe have decreased since 1990



There is a broad range of N₂O emissions per person, with wealthier regions generally above the world average


Oceania excluded to make figure clearer. Oceania emits around 6kgN per person

Emissions from Europe and Russia decreased by a total of 0.6 (0.5–0.7) TgN/yr over 1980-2016, while emissions from the remaining regions increased by a total of 2.9 (2.4–3.4) TgN/yr

The SSPs lead to a broad range in baselines (grey), with more aggressive mitigation leading to lower temperature outcomes. The bold lines are scenarios that will be analysed in CMIP6 and the results assessed in the IPCC AR6 process. The bold black and dashed blue and yellow lines are the estimated actual emissions

This set of quantified SSPs are based on the output of six Integrated Assessment Models (AIM/CGE, GCAM, IMAGE, MESSAGE, REMIND, WITCH). Model and Data Sources: <u>Riahi et al. 2016</u>; <u>Rogelj et al. 2018</u>; <u>IIASA SSP Database</u>; <u>IAMC</u>; <u>Global Carbon Budget 2019</u> GLOBAL

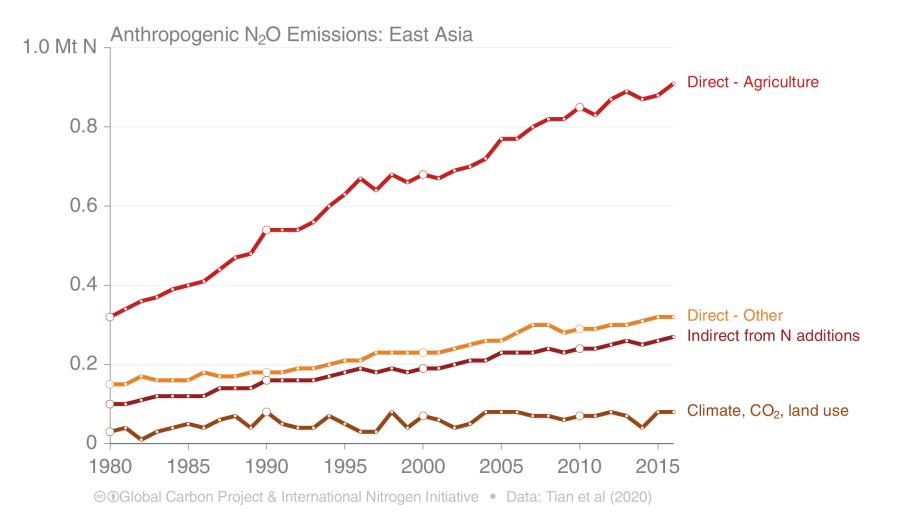

CARBON PROJECT

The budget includes **21** natural and anthropogenic source categories. Global N₂O emissions have increased significantly since the 1980s, driven primarily by anthropogenic sources.

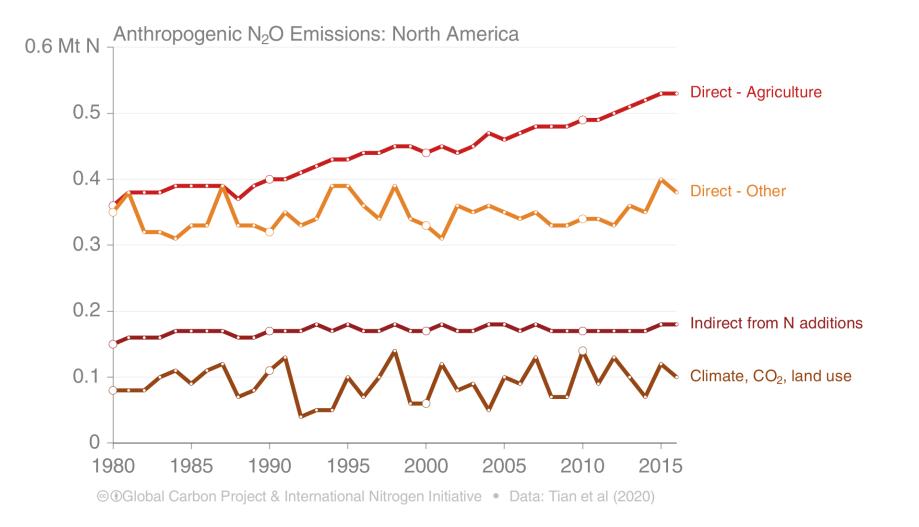
		the 1980s			the 1990s			the 2000s			2007-2016		
Anthropogenic sources		mean	min	max									
Direct emissions of N additions in the agricultural sector (Agriculture)	Direct soil emissions	1.5	0.9	2.6	1.7	1.1	3.1	2.0	1.3	3.4	2.3	1.4	3.
	Manure left on pasture	0.9	0.7	1.0	1.0	0.7	1.1	1.1	0.8	1.2	1.2	0.9	1.
	Manure management	0.3	0.2		0.3	0.2	0.4	0.3	0.2	0.5	0.3		0.
	Aquaculture	0.01	0.00	0.03	0.03	0.01	0.1	0.1	0.02	0.2	0.1	0.02	0.:
	sub-total	2.6	1.8	4.1	3.0	2.1	4.8	3.4	2.3	5.2	3.8	2.5	5.
sources	Fossil fuel and industry	0.9	0.8		0.9	0.9	1.0	0.9	0.8	1.0	1.0	0.8	1.
	Waste and waste water	0.2	0.1	0.3	0.3	0.2	0.4	0.3	0.2	0.4	0.3	0.2	0.
	Biomass burning	0.7	0.7	0.7	0.7	0.6	0.8	0.6	0.6	0.6	0.6	0.5	0.
	sub-total	1.8	1.6		1.9	1.7	2.1	1.0	1.6	2.1	1.9		
anthropogenic N additions	Inland waters, estuaries, coastal zones	0.4	0.2	0.5	0.4	0.2	0.5	0.4	0.2	0.6	0.5	0.2	0.
	Atmospheric N deposition on land	0.6	0.3	1.2	0.7	0.4	1.4	0.7	0.4	1.3	0.8	0.4	1.4
	Atmospheric N deposition on ocean	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.2
	sub-total	1.1	0.6		1.2	0.7	2.1	I.Z	0.6	2.1	1.3	0.7	2.2
climate/CO2/land cover change	CO ₂ effect	-0.2	-0.3	0.0	-0.2	-0.4	0.0	-0.3	-0.5	0.1	-0.3	-0.6	0.1
	Climate effect	0.4	0.0	0.8	0.5	0.1	0.9	0.7	0.3	1.2	0.8	0.3	1.3
	Post-deforestation pulse effect	0.7	0.6	0.8	0.7	0.6	0.8	0.7	0.7	0.8	0.8	0.7	0.8
	Long-term effect of reduced mature forest	-0.8		-0.9	-0.9		-1.0	-1.0		-1.1	-1.1		-1.1
	area	-0.0	-0.8			-0.8			0.0				
	sub-total	0.1	-0.4		0.1		0.7	0.2	-0.4	0.9	0.2	-0.6	
Anthropogenic total		5.6	3.6	8.7	6.2	3.9	9.7	6.7	4.1	10.3	7.3	4.2	11.4
Natural fluxes		_									-		
Natural soils baseline		5.6	4.9		5.6	4.9	6.5	3.0	5.0	6.5	5.6	4.9	6.
Ocean baseline		3.6	3.0		3.5	2.8	4.4	5.5		4.3	3.4	2.0	
Natural (Inland waters, estuaries, coastal zones)		0.3	0.3		0.5	0.3	0.4	0.5	0.3	0.4	0.5	0.3	0.4
Lightning and atmospheric production		0.4	0.2		0.4	0.2	1.2	0.4	0.2	1.2	0.4	0.2	
Surface sink		-0.01	0.00		-0.01	0.00	-0.3	-0.01	0.00	-0.3	-0.01	0.00	-0.3
Natural total		9.9	8.5		9.0		12.1	9.8	8.2	12.0	9.7	0.0	
Bottom-up total source		15.5	12.1	20.9	15.9	12.2	21.7	16.4	12.3	22.4	17.0	12.2	23.5
Top-down Ocean								5.1	3.1	7.2	J 3.1		7.
Top-down Land								10.8	9.3	12.5	11.0		
Top-down total source								15.9		16.9	10.9	15.9	
Top-down Statospheric sink								12.1		13.1	12.4	11.7	13.3
Observed atmospheric chemica	l sink*							13.3	12.2	14.4	13.5		
Change in atmospheric abund	dance**							3.7		4.2	4.3		4.8
Atmospheric burden		1462	1442	1482	1493	1472	1514	1531	1510	1552	1555	1533	1577

Global N₂O Budget (complete)

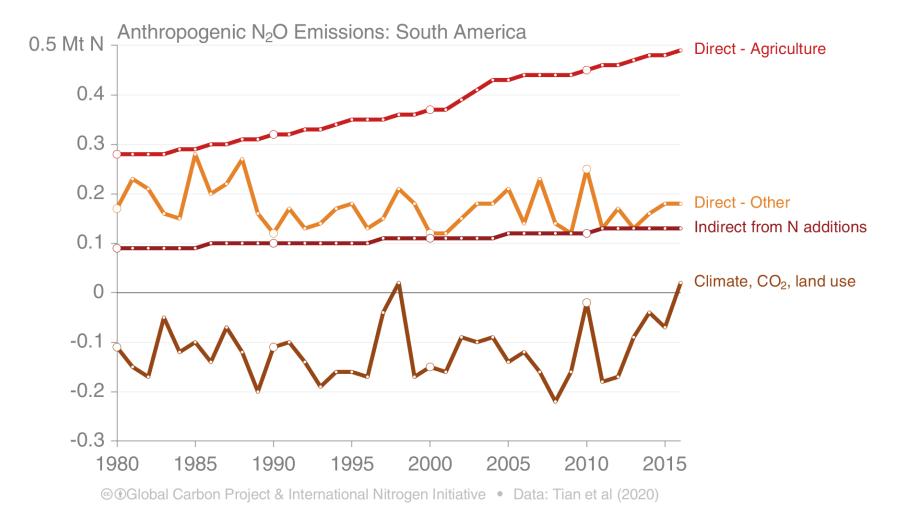
- The global N₂O budget is synthesized from 43 independent estimates, including emission inventories, process-based and empirical models (so-called "bottom-up" estimates) and atmospheric measurements and modeling (so-called "top-down" estimates).
- Process-based models were used for estimates of emissions from agriculture and land-use change, as well as natural emissions from soils, inland waters, and ocean.
- ✓ Process-based models were used to determine the interactions between nitrogen additions and climate and derived a positive N₂O-climate feedback.
- Empirical models were used for estimates of emissions from agriculture, waste, fossil fuel combustion, industry, biomass burning and aqua-culture.
- Measurements of atmospheric N₂O were used in statistical models to optimize independent emissions estimates (the so-called "atmospheric inversion" approach). This approach estimates the sum of N₂O sources over land and ocean.
- \checkmark Atmospheric chemistry transport models were used to estimate the stratospheric sink of N₂O

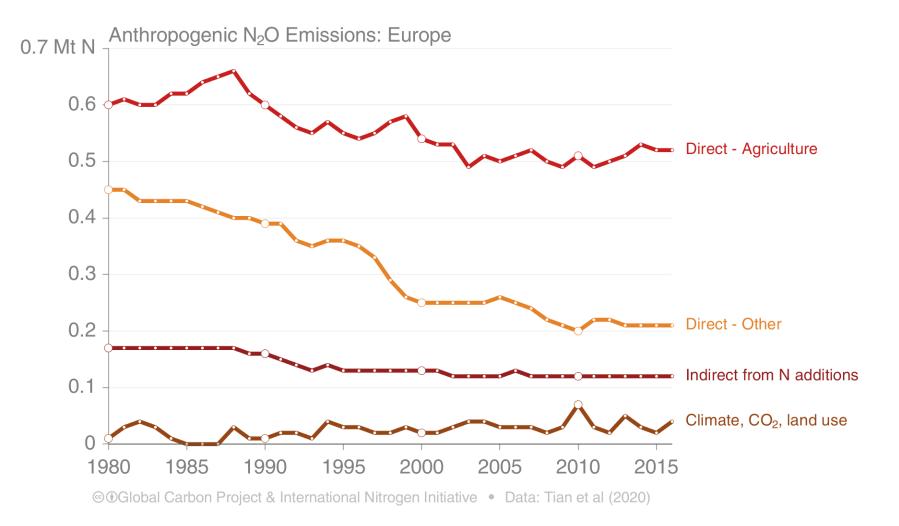


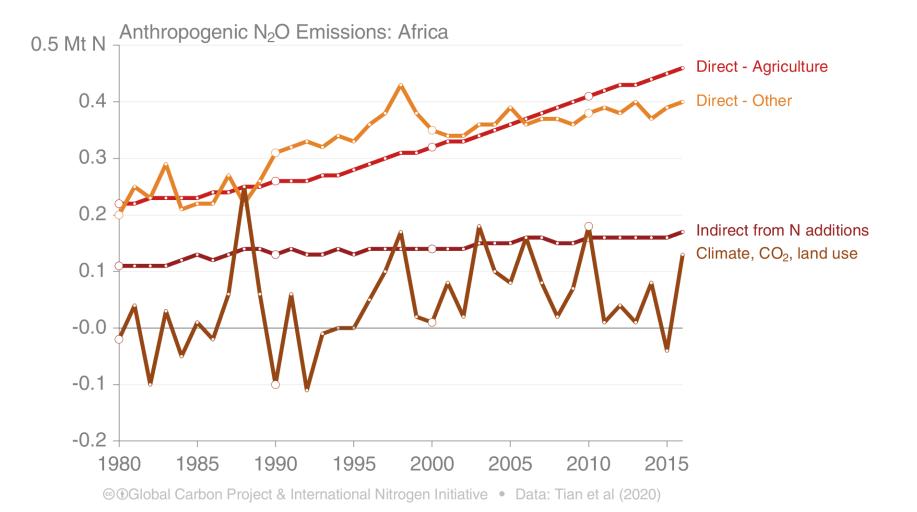
- ✓ Current data analysis and synthesis of long-term N₂O fluxes are based on a wide variety of top-down and bottom-up approaches.
- ✓ Top-down approaches provide a range of estimates, due to systematic errors in the modelled atmospheric transport and stratospheric loss of N_2O , as well as large uncertainty in prior ocean flux estimates.
- ✓ Bottom-up approaches are subject to large uncertainties in various sources from land and oceans. For processbased land and ocean models, the uncertainty is associated with differences in model configuration as well as process parameterization.
- ✓ GHG inventories using default Emission Factors show large uncertainties at the global scale, especially for agricultural N₂O emissions due to the spatial divergence in climate, management, and soil conditions.
- ✓ A large range of Emission Factors have been used to estimate aquaculture N₂O emissions and long-term estimates of N flows in freshwater and marine aquaculture are scarce.
- ✓ Missing fluxes from permafrost thawing and the freeze-thaw.
- ✓ The relative proportion of ocean N₂O from oxygen-minimum zones, Oxic versus sub-oxic ocean zones, is highly uncertain.

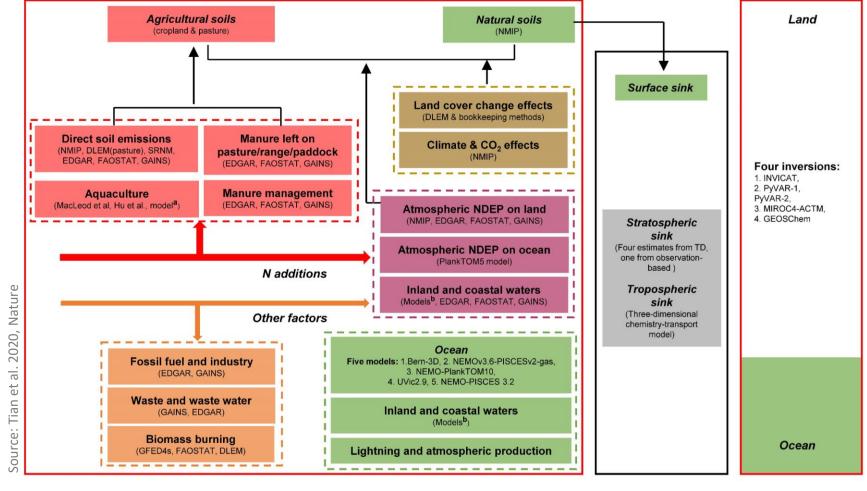


Emissions from key regions







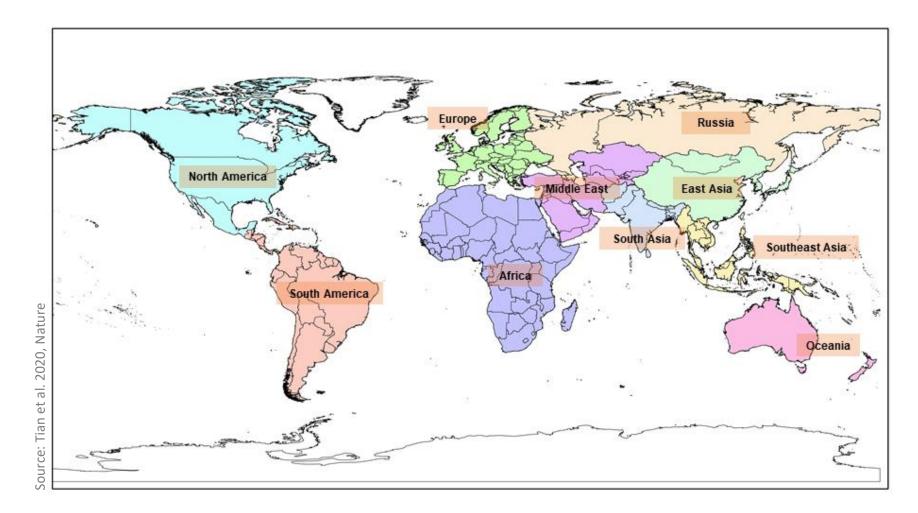

Additional figures

The methodology for preparing the N₂O budget

The global N₂O budget is synthesized from **43** independent estimates

(Bottom-up (BU) are from statistical and process-based models, Top-down (TD) are derived from atmospheric observations)

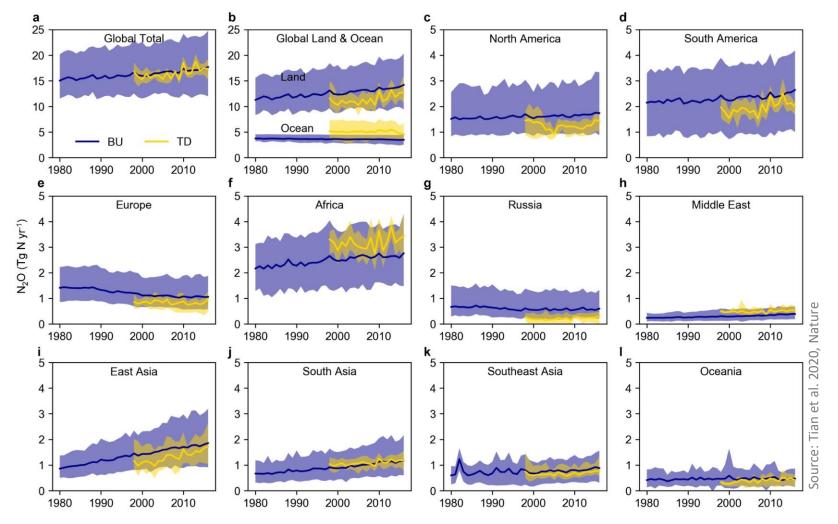
Sources (BU)


Sinks

Sources (TD)

^aMacLeod et al. and Hu et al. provide global aquaculture N₂O emissions in 2013 and in 2009, respectively; and the nutrient budget model provides N flows in global freshwater and marine aquaculture over the period 1980–2016. ^bModel-based estimates of N₂O emissions from 'Inland and coastal waters' include rivers and reservoirs, lakes, estuaries, coastal zones (i.e., seagrasses, mangroves, saltmarsh and intertidal saltmarsh), and coastal upwelling[.]

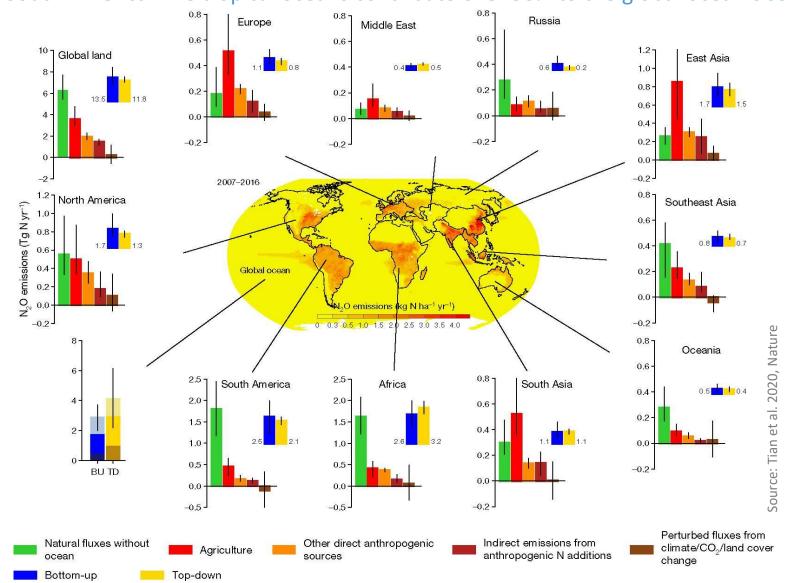
The Earth's ice-free land was partitioned into ten regions


Annual comparison of Bottom-Up (BU) and Top-Down (TD) estimates

Global N₂O emission estimates from BU and TD are comparable in magnitude and trend for 1998-2016. TD estimates show larger inter-annual variability but have smaller land and larger ocean emissions.

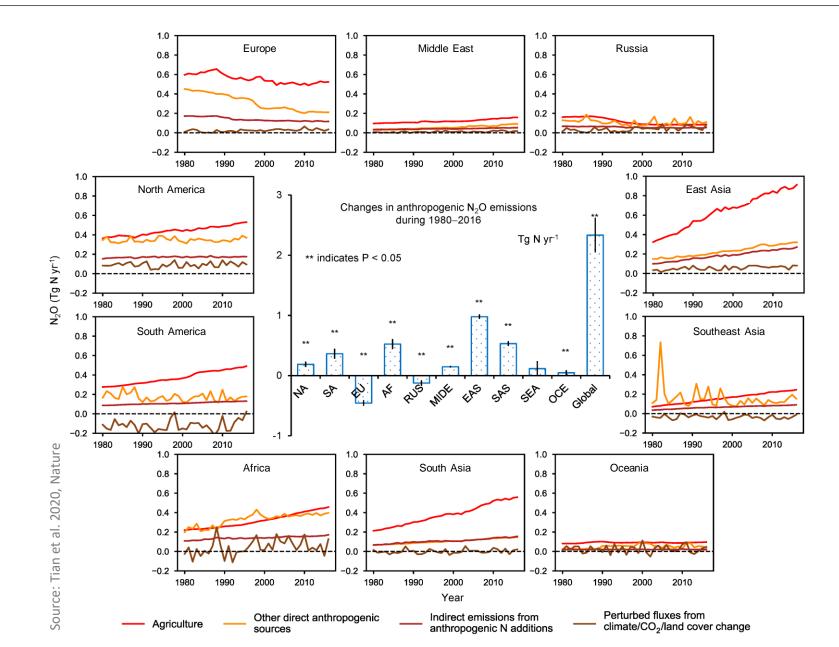
CARBON

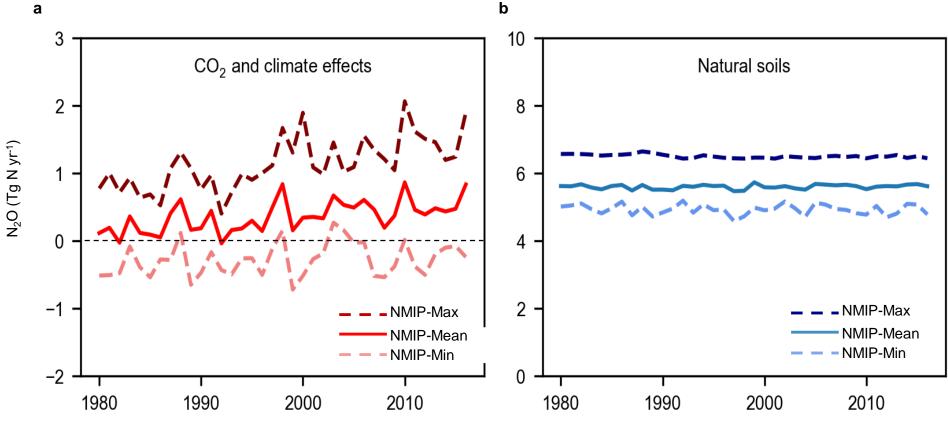
PROJECT


GLOBAL

Regional N₂O Budgets for 2007-2016

GLOBAL

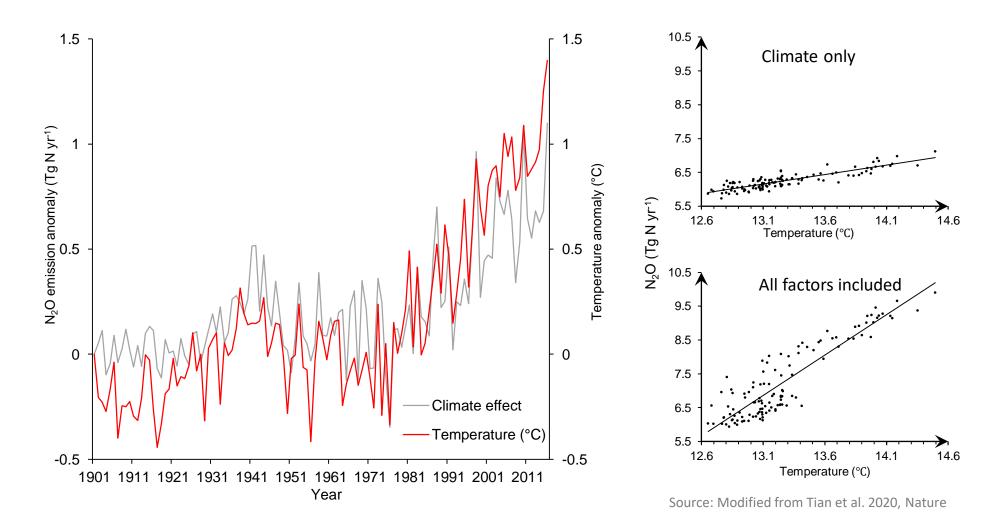

Bottom-up and top-down approaches indicate that Africa was the largest N₂O land source in the last decade, followed by South America. The tropical oceans contribute over 50% to the global oceanic source.


Regional trends in anthropogenic N₂O emissions

GLOBAL

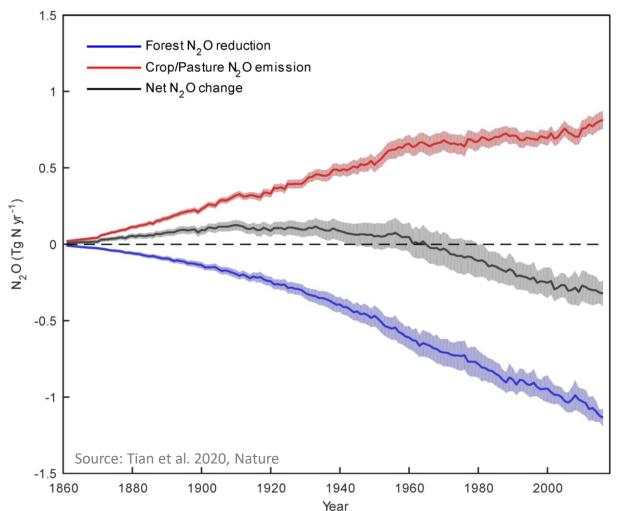
CARBON PROJECT

A large inter-annual N₂O variability is attributable to the effect of environmental factors (i.e., climate).


Source: Modified from Tian et al. 2020, Nature

Results from six terrestrial biosphere models (Global N₂O Model Intercomparison Project, NMIP) **a**) change in global land N₂O emissions due to CO₂ and climate effects, **b**) variability in global natural soil N₂O emissions. (Note: global natural soil N₂O emissions were defined as without consideration of land use change (e.g., deforestation) and without consideration of indirect anthropogenic effects via global change (i.e., climate, elevated CO₂, and atmospheric N deposition) Process-based model estimates show that soil N_2O emissions increased substantially due to climate change since the early 1980s constituting a positive nitrogen-climate feedback.

CARBON


PROJECT

GLOBAL

The global net effect of deforestation is first an increase and then gradually a reduction of N_2O emissions, reaching -0.34 ± 0.11 TgN/yr in 2016.


(Note: changes in crop/pasture emissions are calculated in the absence of N-fertilizer and manure use, when this is considered the crop/pasture emissions are significantly higher and the net N₂O change is positive)

Agricultural N₂O emissions for Brazil increased by 120% from 1980 to 2016 due to increases in livestock and N-fertilizer use

GLOBAL

CARBON PROJECT

In (a), the red line shows the direct N_2O emissions from livestock manure based on EDGARv4.3.2, GAINS, and FAOSTAT (the sum of 'manure left on pasture' and 'manure management'). The gray columns show the amount of beef exported by Brazil. In (b), the orange line shows the direct N_2O emissions from croplands due to N-fertilization based on NMIP and SRNM. The gray columns show the amount of soybean and corn exported by Brazil.