

Global Nitrous Oxide Budget 2024

The GCP is a Global Research Project of

PowerPoint version 1.0 Published 12 June 2024

The work presented here has been possible thanks to the enormous observational and modelling efforts of the institutions and networks below

Atmospheric N₂O datasets NOAA/ESRL | AGAGE | CSIRO

Inventories FAOSTAT | EDGAR v7.0 | UNFCCC | GFED4s

Other sources SRNM | one nutrient budget model | Mechanistic Stochastic Modeling | Bookkeeping method Atmospheric inversions INVICAT | PyVAR-CAMS | MIROC4-ACTM | GEOS-Chem

Land models CLASSIC | DLEM | ELM | ISAM | LPX-Bern | O-CN | ORCHIDEE | VISIT

Ocean models Bern-3D | NEMOv3.6-PISCESv2-gas | NEMO-PlankTOM10 | UVic2.9

Shelf products MEM-RF | CNRM-0.25° | ECCO2-Darwin & ECCO-Darwin

Full acknowledgements of individuals, institutions, and grants that have provided support and made possible the new Global N₂O Budget are provided in Tian et al. (2024) Earth System Science Data

Global N₂O Budget - Scientific Steering Committee:

H Tian USA – Co-Chair | RL Thompson Norway – Co-Chair | JG Canadell Australia | W Winiwarter Austria | P Suntharalingam UK | EA Davison USA | M Prather USA | P Ciais France | RB Jackson USA | P Regnier Belgium | M Muntean Italy | F Zhou China

Contributors:

Naiqing Pan USA | Shufen Pan USA | Sönke Zaehle Germany | Hermann W. Bange Germany | Sarah Berthet France | Zihao Bian China |
Daniele Bianchi USA | Alexander F. Bouwman The Netherlands | Erik T. Buitenhuis UK | Geoffrey Dutton USA | Minpeng Hu USA |
Akihiko Ito Japan | Atul K. Jain USA | Aurich Jeltsch-Thömmes Switzerland | Fortunat Joos Switzerland | Sian Kou-Giesbrecht Canada |
Paul B. Krummel Australia | Xin Lan USA | Angela Landolfi Italy | Ronny Lauerwald France | Ya Li China | Chaoqun Lu USA | Taylor
Maavara UK | Manfredi Manizza USA | Dylan B. Millet USA | Jens Mühle USA | Prabir K. Patra Japan | Glen P. Peters Norway | Xiaoyu
Qin China | Laure Resplandy USA | Judith A. Rosentreter Australia | Hao Shi China | Qin Sun Switzerland | Daniele Tonina USA |
Francesco N. Tubiello Italy | Guido R. van der Werf The Netherlands | Nicolas Vuichard France | Junjie Wang The Netherlands | Kelley
C. Wells USA | Luke M. Western USA | Chris Wilson UK | Jia Yang USA | Yuanzhi Yao China | Yongfa You USA | Qing Zhu USA

Reference:

Tian, H., Pan, N., Thompson, R. L., Canadell, J. G., Suntharalingam, P., Regnier, P., Davidson, E. A., Prather, M., Ciais, P., Muntean, M., Pan, S., Winiwarter, W., Zaehle, S., Zhou, F., Jackson, R. B., Bange, H. W., Berthet, S., Bian, Z., Bianchi, D., Bouwman, A. F., Buitenhuis, E. T., Dutton, G., Hu, M., Ito, A., Jain, A. K., Jeltsch-Thömmes, A., Joos, F., Kou-Giesbrecht, S., Krummel, P. B., Lan, X., Landolfi, A., Lauerwald, R., Li, Y., Lu, C., Maavara, T., Manizza, M., Millet, D. B., Mühle, J., Patra, P. K., Peters, G. P., Qin, X., Raymond, P., Resplandy, L., Rosentreter, J. A., Shi, H., Sun, Q., Tonina, D., Tubiello, F. N., van der Werf, G. R., Vuichard, N., Wang, J., Wells, K. C., Western, L. M., Wilson, C., Yang, J., Yao, Y., You, Y., and Zhu, Q.: Global nitrous oxide budget (1980–2020), Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, 2024.

Publication of the 2024 Global N₂O Budget

https://www.globalcarbonproject.org/nitrousoxidebudget

Access country N₂O emission profiles, compare and rank countries, and download data and figures. https://globalcarbonatlas.org

Emissions

1 Megatonne (Mt) = 1 million (metric) tonnes = 1×10¹²g = 1 Teragram (Tg)

1 kg nitrogen in nitrous oxide (N) = 1.57 kg nitrous oxide (N₂O)

1 Mt N = 1.57 million tonnes $N_2O = 1.57$ Mt N_2O

Atmospheric concentrations

1 part per billion (ppb) of atmospheric N in N₂O (N₂O-N) = 4.79 million tonnes of N₂O-N = (x1.57) 7.5 million tonnes of N₂O

Disclaimer

The Global Carbon Budget and the information presented here are intended for those interested in learning about the carbon and nitrogen cycles, and how human activities are changing them. The information contained herein is provided as a public service and as our current best understanding, but with no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability of the information.

- N₂O is a powerful greenhouse gas (GHG) and a stratospheric ozone-depleting substance
- Per unit of mass, N₂O is 273 times more powerful greenhouse gas than CO₂ when integrated over 100-years.
- Once emitted, N₂O stays in the atmosphere for an average of 117 years
- N₂O is the third most important GHG contributing to human-induced global warming, after carbon dioxide (CO₂) and methane (CH₄).
- N₂O is responsible for 6.5% of the global warming due to the three most important GHGs (CO₂, CH₄, and N₂O) (Forster et al. (2023). N₂O concentration in the atmosphere reached 336 parts per billion (ppb) in 2022, about 24% above levels around the year 1750, before the industrial era began.
- In addition to N₂O emissions, the inefficient use of synthetic nitrogen fertilizers and animal manure, also leads to the pollution of groundwater, drinking water, and inland and coastal waters.

- 1. Global annual N₂O emissions were 17.8 (17.4–18.1) Tg N yr⁻¹ from 2010 to 2019 (based on two approaches: bottom-up and top-down atmospheric inversions).
- 2. Global anthropogenic emissions increased by 40% from 1980 to 2020.
- 3. Agricultural production (due to the use of nitrogen fertilizers and animal manure) contributed 74% of the total anthropogenic N₂O emissions in the last decade.
- 4. The concentration of N₂O in the atmosphere reached 336 parts per billion in 2022 (25% above pre-industrial levels), and anthropogenic emissions were almost exclusively responsible for the growth.
- 5. N₂O accumulation in the atmosphere has accelerated in the last four decades, with growth rates over the past three years (2020-2022) higher than any previous observed year since 1980.
- 6. Soil N₂O emissions are increasing due to interactions between nitrogen inputs and global warming, constituting an emerging positive N₂O-climate feedback.
- 7. The increase in atmospheric N₂O concentrations exceeds the projections of the least optimistic scenarios used by the Intergovernmental Panel on Climate Change (IPCC AR5 and AR6), underscoring the urgent need to mitigate N₂O emissions.

Overview of the Global N₂O Budget (2010-2019)

Detailed Global N₂O Budget (2010-2019)

GLOBAL

CARBON PROJECT

Anthropogenic sources contributed 36% to total global N₂O emissions (median estimate)

The global N_2O concentration has increased by about 25%, from 270 parts per billion (ppb) in 1750 to 336 ppb in 2022

GLOBAL

CARBON PROJECT

GLOBAL CARBON Atmospheric Concentration and Growth Rate Over the Last 40 Years

The growth in global atmospheric N_2O is accelerating. The mean growth rate for 2010-2019 was 0.96 ppb yr⁻¹. The mean growth rate in 2020 was 30% higher than in 2010-2019, with a continuation of high growth in 2021-2022.

- Global anthropogenic N₂O emissions are growing at over 1% per year
- Agriculture is the single largest anthropogenic source of N₂O emissions

Anthropogenic Emissions Sources:

(b) <u>Direct emissions from nitrogen additions in agriculture</u> result from the application of synthetic N fertilizers and manure in crops and pasture lands.

(c) <u>Other direct emissions</u> include fossil fuel and industry, waste and wastewater, and biomass burning (both human-induced and wildfires).

(d) <u>Indirect emissions</u> from anthropogenic nitrogen additions due to nitrogen deposition on land and oceans, and N loads in inland waters, estuaries, and costal vegetation.

(e) <u>Perturbed fluxes</u> result from the impacts of anthropogenic climate change, CO_2 fertilization on vegetation, and changes in land cover (e.g., deforestation)

Global Agricultural Emissions From Bottom-Up Models

GLOBAL

Biogeochemical models (NMIP2) show increasing direct soil emissions at a higher rate than inventory models. Aquaculture emissions are highly uncertain.

Anthropogenic Emissions by World Region

The recent global increase in N₂O emissions is driven by Asia, followed by Africa and Central & South America, while emissions in Europe have significantly decreased (this figure includes biomass burning from anthropogenic fires and wildfires).

GLOBAL CARBON Anthropogenic Emissions per Person by World Region

There is a broad range of N₂O emissions per person, with wealthier regions generally above the world average (this figure includes biomass burning). Per capita emissions are also influenced by how much food and N₂O-generating products are exported or imported.

Emissions from Europe and Russia decreased by a total of 0.6 TgN/yr over 1980-2020, while emissions from the remaining regions increased by a total of 2.5 TgN/yr.

Changes in Anthropogenic N₂O Emissions from 1980 to 2020 (MtN/yr)

Regional Trends in Anthropogenic N₂O Emissions

GLOBAL

CARBON PROJECT

Europe and Russia show a net decrease in emissions from 1980 to 2020, while China, South Asia and Southeast Asia show substantial increases

GLOBAL CARBON PROJECT

Regional N₂O Budgets for 2010-2019

In China, Europe, USA, Southern Asia, and Middle East agricultural emissions far exceed natural emissions. Agricultural emissions are exceeded by other anthropogenic emissions in Korea + Japan, Central America, and South Africa

GLOBAL CARBON Annual Comparison of Bottom-Up and Top-Down Estimates

Global total N₂O emission estimates from BU and TD are comparable in magnitude and trend for 1998-2020

Observed Atmospheric N₂O Higher than Predicted

GLOBAL

CARBON PROJECT

The observed atmospheric N₂O concentrations in the past decade have exceeded the most pessimistic illustrative future GHG scenarios used by the IPCC.

Global N₂O Sources and Sinks in the Past Four Decades

The budget includes **21** natural and anthropogenic source categories

		1980-1989			1990-1999			2000-2009			2010-2019			2020		
Anthropogenic sources		mean	min	max	mean	min	mex	mean	min	mex	mean	min	mex	mean	min	MBX
	Direct soil emission	1.2	11	1.3	1.5	1.2	1.6	1.7	14	2.0	2.0	1.6	2.4	2.1	1.7	2.6
	Manure left on pasture	0.9	05	1.3	1.1	0.6	1.4	1.2	0.7	1.6	1.3	0.8	18	1.4	0.9	19
Direct agricultural	Manure management	0.2	0.2	0.3	0.3	0.2	0.3	0.2	0.2	0.3	0.3	0.2	0.3	0.3	0.2	0.3
	Aquaculture	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.2	0.1	0.0	0.3	0.1	0.0	0.3
	subtotal	2.4	18	3.0	2.8	21	3.4	3.2	2.3	4.0	3.6	2.7	43	3.9	2.9	51
	Fossil fuel and industry	1.0	1.0	1.0	1.0	09	1.1	1.1	1.0	1.1	1.1	1.0	1.2	1.1	1.0	11
Other direct	Waste and waste water	0.1	01	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3
anthropogenic	Biomass burning	0.9	05	1.2	0.9	05	1.2	0.8	05	1.0	0.8	0.5	1.0	0.8	0.5	09
	subtotal	2.0	17	2.4	2.1	1.6	24	2.1	18	2.4	2.1	1.8	2,4	2.1	1.7	2,4
	Inland waters, estuaries, coastal	0.2		0.4	0.2		0.4	0.4		0.5	0.4		05	0.4		0.6
Indirect emissions	zones	0.5	01		0.5	01		0.4	01		0.4	0.1		0.4	0.1	
from anthropogenic N additions	Atmos. N dep. on land	0.5	05	0.6	0.6	05	0.7	0.7	0.6	0.8	0.7	0.6	08	0.8	0.6	09
	Atmos. N dep. on ocean	0.1	01	0.2	0.1	01	0.2	0.1	01	0.2	0.1	0.1	0.2	0.1	0.1	0.2
	subtotal	0.9	0.7	1.2	1.1	03	1.4	1.1	03	1.4	1.2	0.9	1.6	1.3	0.9	1.6
Perturbed fluxes from	CO₂ effect	-0.4	-08	0.2	-0.5	-1.0	0.2	-0.6	-1.3	0.3	-0.7	-1.5	0.3	-0.8	-1.6	0.3
	Climate effect	0.4	01	0.8	0.5	0.2	0.7	0.6	01	0.8	0.7	0.2	1.2	0.9	0.4	18
	Post-deforestation pulse effect	0.8	0.6	1.1	0.9	0.6	1.2	0.9	05	1.3	0.9	0.4	1.3	0.8	0.4	1.3
climate/CO₂/land	Long-term effect of reduced	1.2		-14	1.2		-15	1.0		-15	1.0		-1.6	1 5		-1.6
cover change	mature forest area	-1.2	-11		-1.5	-1.2		-1.4	-1.2		-1.4	-1.3		-1.5	-1.4	
	subtotal	-0.4	-11	0.7	-0.5	-1.4	0.6	-0.6	-1.9	0.8	-0.6	-2.1	1.2	-0.6	-2.2	18
Anthropogenic total		5.0	3.0	7.3	5.5	31	7.9	5.8	31	8.6	6.5	3.2	10.0	6.7	3.3	109
Natural sources																
Natural soils baseline		6.4	39	8.5	6.4	38	8.6	6.4	39	8.5	6.4	3.9	8.6	6.4	3.8	8.7
Open ocean baseline		3.7	3.0	4.6	3.6	28	4.5	3.6	2.7	4.7	3.5	2.5	4.7	3.5	2.5	4.7
Continental shelves		1.2	0.6	1.6	1.2	0.6	1.6	1.2	0.6	1.6	1.2	0.6	1.6	1.2	0.6	1.6
Natural (inland waters, estuaries, coastal vegetation)		0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	01	0.1	0.0	01
Lightning and atmospheric production		0.6	0.3	1.2	0.6	0.3	1.2	0.6	0.3	1.2	0.6	0.3	1.2	0.6	0.3	1.2
Surface sink		0.0	0.0	-0.3	0.0	0.0	-0.3	0.0	0.0	-0.3	0.0	0.0	-0.3	0.0	0.0	-0.3
Natural total		12.0	79	15.8	11.9	7.7	15.8	11.9	75	15.9	11.8	7.3	15.9	11.8	7.4	161
BUtotal		16.9	10.9	23.1	17.4	10.7	23.6	17.7	10.6	24.5	18.2	10.6	25.9	18.5	10.6	27.0
TD ocean								2.8	2.6	3.2	3.0	2.7	3.3	2.7	2.7	2.7
TD land								13.2	121	14.3	14.5	13.0	15.9	14.3	139	14.7
TD total net flux								16.0	149	17.5	17.4	15.8	19.2	17.0	16.6	17.4
TD stratospheric sink								12.2	11.7	12.6	12.6	12.3	129	12.9	125	13.2
Atmospheric chemical sink								12.8	11.7	13.8	13.4	12.3	14.5	14.0	128	15.2
Change in atmospheric abundance								3.6	3.6	3.7	4.6	4.5	4.7	6.4	6.2	65
Atmospheric burden								1528			1570			1592		
Lifetime (from MLS)								119			117					

- The global N₂O budget is constructed with 43 independent flux estimates, including emission inventories, process-based and empirical models ("bottom-up" estimates), and atmospheric measurements and inverse modeling ("top-down" estimates).
- Process-based models were used to estimate emissions from agriculture and land-use change, as well as natural emissions from soils, inland waters, and oceans.
- Process-based models were used to determine the interactions between nitrogen additions and climate showing a positive N₂O-climate feedback.
- Empirical models were used to estimate emissions from agriculture, waste, fossil fuel combustion, industry, biomass burning, and aquaculture.
- Measurements of atmospheric N₂O were used in statistical models to optimize independent emissions estimates with multiple atmospheric inversion frameworks. This approach estimates the sum of N₂O sources over land and ocean.
- Atmospheric chemistry transport models were used to estimate the stratospheric N₂O sink.

- Top-down approaches have uncertainties due to errors in the modelled atmospheric transport and stratospheric loss of N₂O, as well as due to the limited coverage of atmospheric observations, especially in the tropics and Southern Hemisphere.
- Process-based models are subject to large uncertainties in various sources from land and oceans. These are mostly associated with the model configuration and process parameterization. For land models, the lack of representation of human management (e.g. tillage) also contributes to the uncertainty.
- GHG inventories using default Emission Factors (EFs) have large uncertainties at the global scale, especially for agricultural N₂O emissions due to the poorly captured dependence of EFs on regional climate, land management, and soil biophysical properties.
- Aquacultural emissions have large uncertainties due to the large uncertainty in EFs owing to the scarcity of measurements of N flows in freshwater and marine aquaculture.
- Missing fluxes from permafrost thawing and freeze-thaw cycles.
- The relative proportion of ocean N₂O from oxygen-minimum zones, oxic versus sub-oxic ocean zones, is highly uncertain.

Anthropogenic Emissions from key Nations/Regions

Top National Emitters

China: Anthropogenic N₂O Emissions

Europe: Anthropogenic N₂O Emissions

India: Anthropogenic N₂O Emissions

USA: Anthropogenic N₂O Emissions

Brazil: Anthropogenic N₂O Emissions

Indonesia: Anthropogenic N₂O Emissions

Other Major National Emitters

Mexico

Ethiopia

Pakistan

Democratic Republic of the Congo

Argentina

Australia

Other Major National Emitters

Türkiye

Canada

 <sup>1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020

 @@</sup>Global Carbon Project & International Nitrogen Initiative *
 Data: Tian et al (2024)

Germany

Myanmar

Nigeria

Conception of the second state of the second s

Additional Figures

Temporal changes in fertilizer N and manure N applications, and atmospheric N deposition to global terrestrial ecosystems.

The Methodology for Preparing the N₂O Budget

The global N₂O budget is synthesized from **43** independent estimates

(Bottom-up (BU) are from statistical and process-based models, Top-down (TD) are derived from atmospheric observations)

Study Regions for Regional N₂O Budgets

GLOBAL

CARBON PROJECT

The Earth's ice-free land was partitioned into eighteen regions

Cropland N₂O Emission Factors

Emission Factors describe the mass of N₂O emitted relative to the amount of anthropogenic nitrogen input. Emission Factors were calculated from the NMIP2 process-based models

GLOBAL CARBON Changes in N₂O Emissions from Deforestation and Climate

- The global net effect of deforestation is first an increase and then gradually a reduction of N₂O emissions and was -0.6 ± 0.5 TgN/yr in 2020*
- The effect of climate change on N₂O emissions is positive and increased over the past four decades
- The effect of increasing atmospheric CO₂ on N₂O emissions in negative and is due to its effect of increasing the nitrogen use efficiency of plants

*Note: changes in crop/pasture emissions are calculated in the absence of N-fertilizer and manure use, when this is considered the crop/pasture emissions are significantly higher and the net N_2O change is positive

Four top-down estimates were used and are from independent atmospheric inversion frameworks. The inversions are very consistent in the trends and partially also in the inter-annual variations, but differ in the magnitudes of global, land and ocean sources

Estimates of the Stratospheric N₂O Sink

- Estimates from four atmospheric inversions and one based on satellite observations and a model of photolysis
- Differences in the stratospheric estimate among atmospheric inversions partly explains the differences in the magnitudes of their source estimates

