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Nitrous oxide (N,0) is the third most important long-lived GHG and an important stratospheric ozone depleting substance.
Agricultural practices and the use of N-fertilizers have greatly enhanced emissions of N,O. Here, we present estimates of N,O
emissions determined from three global atmospheric inversion frameworks during the period 1998-2016. We find that global
N,O emissions increased substantially from 2009 and at a faster rate than estimated by the IPCC emission factor approach.
The regions of East Asia and South America made the largest contributions to the global increase. From the inversion-based
emissions, we estimate a global emission factor of 2.3 + 0.6%, which is significantly larger than the IPCC Tier-1default for com-
bined direct and indirect emissions of 1.375%. The larger emission factor and accelerating emission increase found from the
inversions suggest that N,O emission may have a nonlinear response at global and regional scales with high levels of N-input.
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Emissions are shown in Mega tonnes N
1 Megatonne (Mt) = 1 million tonnes = 1 X 10*%g = 1 Teragram (Tg)
1 kg nitrogen in nitrous oxide (N) = 1.57 kg nitrous oxide (N,O)

1 MtN = 1.57 million tonnes N,O =1.57 MtN,O

Disclaimer

The Global Carbon Budget and the information presented here are intended for those interested in
learning about the carbon cycle, and how human activities are changing it. The information contained
herein is provided as a public service, with the understanding that the Global Carbon Project team make
no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability
of the information.



GLOBAL CARBON NZO Basics

PROJECT

* N,O is both a powerful greenhouse gas (GHG) and a ozone-depleting substance.

* Per unit of mass, N,O is considered 298 times as effective as a greenhouse gas as
CO, when integrating over 100-years.

* Once emitted, N,O stays in the atmosphere for longer than a human life, about
116 9 years.

* N,O is the third most important GHG contributing to human-induced global
warming, after carbon dioxide (CO,) and methane (CH,).

* N,O is responsible for 6.5% of the global warming due to three most important
GHGs (CO,, CH, and N,O) (Updated to 2019 from Etminan et al. 2016, GRL)

* N,O concentration in the atmosphere reached 331 parts per billion (ppb) in 2018
(WMO 2020, United in Science), about 22% above levels around the year 1750, before
the industrial era began.
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* Global N,O emissions were about 17.0 (15.9-17.7) Tg N yr! over the 10-year period
2007-2016 (based on two approaches).

* Global anthropogenic emissions increased by 30% since 1980, dominated by
nitrogen fertilization in croplands. The anthropogenic emission increase is almost
exclusively responsible for the growth in atmospheric N,O.

* Soil N,O emissions are increasing due to interactions between nitrogen inputs and
global warming, constituting an emerging positive N,O-climate feedback.

* The recent increase in global N,O emissions exceeds the emission trends of the
least optimistic scenarios developed by the Intergovernmental Panel on Climate
Change (IPCC), underscoring the urgent need to mitigate N,O emissions.
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Anthropogenic sources contribute, for the central estimate, 43% to total global N,O
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The global N,O concentration has increased by about 22%, from 270 parts per billion (ppb) in
1750 to 331 ppb in 2018.
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Atmospheric concentration and growth rate over the last 40 years

The growth in global atmospheric N,O is accelerating
The mean growth rate since 2000 is 0.84 ppb/yr

Global N,O atmospheric concentration and growth rate
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@®Global Carbon Project & International Nitrogen Initiative ¢ Data: Tian et al (2020)
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Global anthropogenic N,O emissions are growing at over 1% pear year.
Agriculture is the single largest anthropogenic source of N,O emissions.

Anthropogenic N,O Emissions: Global

Climate, CO,, land use

Indirect from N additions

Direct - Other
(industry, fossil fuels, others)

Direct - Agriculture

_1 I I T I T I I I
1980 1985 1990 1995 2000 2005 2010 2015

Direct sources are those occurring where nitrogen additions are made, while
indirect sources are those occurring down-stream or downwind
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The recent global increase in N,O emissions is driven by Asia, followed by South America and Africa, while
emissions in Europe have decreased since 1990

1 6MtN “Anthropogenic N,O Emissions: Total

\// East Asia
f

P._— North America
y—— Africa

_~South Asia
—~—Europe
——South America

——Southeast Asia

__—Russia
~Middle East

—QOceania

0 -

1980 1985 1990 1995 2000 2005 2010 2015

@®Global Carbon Project & International Nitrogen Initiative ® Data: Tian et al (2020)
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There is a broad range of N,O emissions per person, with wealthier regions generally above the world average

3.5 kg N -Anthropogenic N;O Emissions: Total
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@®Global Carbon Project & International Nitrogen Initiative e Data: Tian et al (2020)

Oceania excluded to make figure clearer. Oceania emits around 6kgN per person
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Emissions from Europe and Russia decreased by a total of 0.6 (0.5-0.7) TgN/yr over 1980-2016, while
emissions from the remaining regions increased by a total of 2.9 (2.4-3.4) TgN/yr

307 Changes in Anthropogenic N2O Emissions
55| from 1980 to 2016 (MtN/yr) ‘
\
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The SSPs lead to a broad range in baselines (grey), with more aggressive mitigation leading to lower temperature outcomes.
The bold lines are scenarios that will be analysed in CMIP6 and the results assessed in the IPCC AR6 process.

The bold black and dashed blue and yellow lines are the estimated actual emissions

1 Global N;O Emissions

12 TgNy Forcing target & scenario temperature range in 2100 Historical emissions
Median temperatures using MAGICC (ECS=3°C) E:"“"""‘”P
Baseline (3.0-5.1°C) verage
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This set of quantified SSPs are based on the output of six Integrated Assessment Models (AIM/CGE, GCAM, IMAGE, MESSAGE, REMIND, WITCH).
Model and Data Sources: Riahi et al. 2016; Rogelj et al. 2018; IIASA SSP Database; IAMC; Global Carbon Budget 2019
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The budget includes 21 natural and anthropogenic source categories. Global N,O emissions have
increased significantly since the 1980s, driven primarily by anthropogenic sources.

the 1980s the 1990s the 2000s 2007-2016

Anthropogenic sources mean min ™| mean min ™ |mean mn ™ |mean min ™

Direct soil emissions 15 0o 29 17 11 | 20 13 > 23 .4 9

Direct emissions of N additions [Manure left on pasture 09 o7 " 10 o7 M| 11 45 " 1.2 0

in the agricultural sector  [Mlanure management 03 o2 ™ 03 g2 " 03 5, " 03 5, %3

(Agriculture) quaculture 0.01 o0 % 003 g1 ¥ 01 002 %3 0.1 go2 %2

ub-total 26 18 * 30 21 “Y 34 o5 52 3.8 25 °F

Fossil fuel and industry 09 o8 "1 09 0o " 09 o5 " 10 o8

Other direct anthropogenic  |Waste and waste water 02 o1 ™ 03 02 ™ 03 o2 ™ 03 o2 °F
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ub-total 1.8 46 > 1.9 47 2 1.8 15 2! 1.9 46 %9
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anthropogenic N additions  |Atmospheric N deposition on ocean 01 o4 ™ 01 o1 4 01 o1 "4 01 o4 22

ub-total 1.1 o " 1.2 o7 2 12 g6 2! 1.3 o7 23

CO, effect 02 03 % 02 0. ° 03 o5 °f 03 46 O

Climate effect 04 00 4 05 o4 %9 07 o3 'Y 08 o5 '°

Perturbed fluxes from Post-deforestation pulse effect 07 o6 1 07 o6 °F 0.7 o7 °§ 0.8 o7

climate/CO2/land cover Changel::;f—term effect of reduced mature forest 08 05 4 09 05 " 10 05 M| A4 e M

ub-total 01 o4 ° 01 o5 0.2 o4 °° 0.2 o5 "

Anthropogenic total 56 35 ° 62 39 % 67 4 Y 73 4. M4
Natural fluxes

Natural soils baseline 56 40 %9 56 49 °Y 56 s0 ® 56 40 °9

Ocean baseline 36 30 35 25 *1 35 27 *9 34 25 49

Natural (Inland waters, estuaries, coastal zones) 03 o3 ™ 03 03 °] 03 oz %l 03 g3 %

Lightning and atmospheric production 04 02 " 04 g2 " 04 o2 Y 04 o '3

Surface sink -0.01 oo ™Y -0.01 0o0 ™4 -0.01 000 ™4 -0.01 000 7

Natural total 9.9 g5 1 98 53 | 98 g, " 97 o I

Bottom-up total source 155 121 %9 159 122 M| 164 123 P 17.0 120 *

Top-down Ocean 51 31 ™ 51 34 "

Top-down Land 10.8 o3 % 118 106 ™F

Top-down total source 15.9 1594 9 16.9 459

Top-down Statospheric sink 121 114 B 124 447 I

Observed atmospheric chemical sink* 13.3 122 "1 135 104 ™5

Change in atmospheric abundance** 3.7 35 *] 43 a8 48
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Global N,O Budget (complete)

Source: Tian et al. 2020, Nature
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v" The global N,O budget is synthesized from 43 independent estimates, including emission inventories, process-based
and empirical models (so-called “bottom-up” estimates) and atmospheric measurements and modeling (so-called
“top-down” estimates).

v’ Process-based models were used for estimates of emissions from agriculture and land-use change, as well as
natural emissions from soils, inland waters, and ocean.

v’ Process-based models were used to determine the interactions between nitrogen additions and climate and
derived a positive N,O-climate feedback.

v' Empirical models were used for estimates of emissions from agriculture, waste, fossil fuel combustion, industry,
biomass burning and aqua-culture.

v Measurements of atmospheric N,O were used in statistical models to optimize independent emissions estimates
(the so-called “atmospheric inversion” approach). This approach estimates the sum of N,O sources over land and

ocean.

v" Atmospheric chemistry transport models were used to estimate the stratospheric sink of N,O
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v" Current data analysis and synthesis of long-term N,O fluxes are based on a wide variety of top-down and bottom-up
approaches.

v" Top-down approaches provide a range of estimates, due to systematic errors in the modelled atmospheric transport
and stratospheric loss of N,0O, as well as large uncertainty in prior ocean flux estimates.

v Bottom-up approaches are subject to large uncertainties in various sources from land and oceans. For process-
based land and ocean models, the uncertainty is associated with differences in model configuration as well as

process parameterization.

v" GHG inventories using default Emission Factors show large uncertainties at the global scale, especially for
agricultural N,O emissions due to the spatial divergence in climate, management, and soil conditions.

v" A large range of Emission Factors have been used to estimate aquaculture N,O emissions and long-term estimates
of N flows in freshwater and marine aquaculture are scarce.

v" Missing fluxes from permafrost thawing and the freeze-thaw.

v" The relative proportion of ocean N,O from oxygen-minimum zones, Oxic versus sub-oxic ocean zones, is highly
uncertain.
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Emissions from key regions
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Anthropogenic N,O Emissions: East Asia
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Anthropogenic NoO Emissions: South America
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Europe: Anthropogenic N,O Emissions
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Additional figures
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The global N,O budget is synthesized from 43 independent estimates

(Bottom-up (BU) are from statistical and process-based models, Top-down (TD) are derived from atmospheric observations)

Land

\4

Four inversions:
1. INVICAT,

2. PyVAR-1,
PYVAR-2,

3. MIROC4-ACTM,

4. GEOSChem

Source: Tian et al. 2020, Nature

Sources (BU) Sinks Sources (TD)

aMacleod et al. and Hu et al. provide global aquaculture N,0 emissions in 2013 and in 2009, respectively; and the nutrient budget model provides N flows in global freshwater and marine aquaculture over the
period 1980-2016. ®PModel-based estimates of N,O emissions from ‘Inland and coastal waters’ include rivers and reservoirs, lakes, estuaries, coastal zones (i.e., seagrasses, mangroves, saltmarsh and intertidal
saltmarsh), and coastal upwelling:
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The Earth’s ice-free land was partitioned into ten regions

Source: Tian et al. 2020, Nature
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Global N,O emission estimates from BU and TD are comparable in magnitude and trend for 1998-2016.
TD estimates show larger inter-annual variability but have smaller land and larger ocean emissions.
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crosat (carson Regional N,O Budgets for 2007-2016

PROJECT

Bottom-up and top-down approaches indicate that Africa was the largest N,O land source in the last decade, followed
by South America. The tropical oceans contribute over 50% to the global oceanic source.
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GLOBAL CARBON
PROJECT

Regional trends in anthropogenic N,O emissions

N,O (Tg Nyr?)

Source: Tian et al. 2020, Nature
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GLosaL caRBON Estimates of CO,, climate, & soil effects

PROJECT

A large inter-annual N,O variability is attributable to the effect of environmental factors (i.e., climate).
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Results from six terrestrial biosphere models (Global N,O Model Intercomparison Project, NMIP)
a) change in global land N, O emissions due to CO, and climate effects, b) variability in global natural soil N,O emissions.
(Note: global natural soil N,O emissions were defined as without consideration of land use change (e.g., deforestation) and without
consideration of indirect anthropogenic effects via global change (i.e., climate, elevated CO,, and atmospheric N deposition)



GLOBAL CARBON Climate effects based on terrestrial biosphere model simulations

PROJECT

Process-based model estimates show that soil N,O emissions increased substantially due
to climate change since the early 1980s constituting a positive nitrogen-climate feedback.
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crosaticarson  Changes in natural N,O emissions from global deforestation

The global net effect of deforestation is first an increase and then gradually a reduction of N,O emissions,
reaching -0.34 £ 0.11 TgN/yr in 2016.
(Note: changes in crop/pasture emissions are calculated in the absence of N-fertilizer and manure use, when this is
considered the crop/pasture emissions are significantly higher and the net N,O change is positive)
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GLOBAL CARBON Direct soil emissions and agricultural product trades in Brazil

PROJECT

Agricultural N,O emissions for Brazil increased by 120% from 1980 to 2016 due to
increases in livestock and N-fertilizer use
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In (a), the red line shows the direct N,O emissions from livestock manure based on EDGARv4.3.2, GAINS, and FAOSTAT (the sum of ‘manure left on
pasture’ and ‘manure management’). The gray columns show the amount of beef exported by Brazil. In (b), the orange line shows the direct N,O
emissions from croplands due to N-fertilization based on NMIP and SRNM. The gray columns show the amount of soybean and corn exported by Brazil.



